Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(18): 13850-13861, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656824

RESUMO

Isocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There are numerous synthesis strategies for isocyanates both under industrial and laboratory conditions, which do not prevent searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of the mechanism of sulfur dioxide-catalyzed rearrangement of phenylnitrile oxide into phenyl isocyanate, which was first reported in 1977. The DLPNO-CCSD(T) method and up-to-date DFT protocols were used to perform a highly accurate quantum-chemical study of the rearrangement mechanism. An overview of various organic and inorganic catalysts has revealed other potential catalysts, such as sulfur trioxide and selenium dioxide. Furthermore, the present study elucidated how substituents in phenylnitrile oxide influence reaction kinetics. This study was performed by a self-organized collaboration of scientists initiated by a humorous post on the VK social network.

2.
J Phys Chem Lett ; 14(28): 6395-6401, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37428615

RESUMO

By time-resolved action spectroscopy of cryogenically cooled molecular ions, we have achieved a remarkable vibrational resolution in the photoresponse of the deprotonated green fluorescent protein (GFP) chromophore, a key molecular unit in the bioimaging of living cells. We define four characteristic spectral regions of the S0-S1 band with competing electronic and nuclear decay channels. We determine the energy barrier toward internal conversion to be ∼250 cm-1. This inhibits internal conversion and hence statistical fragmentation near the S0-S1 band origin, which is identified at 481.51 ± 0.15 nm (20768 ± 6 cm-1). The origin is red-shifted by only 221 cm-1 compared to that of wild-type GFP at 77 K. This, together with a striking agreement between the vibronic profiles of the protein and its chromophore, suggests their similar photophysics. In combination with theory, the data reveal the coexistence of mutually energy-borrowing mechanisms between nuclei and electrons mediated by specific vibrational modes.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Ânions/química , Análise Espectral , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...