Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254751

RESUMO

Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.

2.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176088

RESUMO

The well-being of skin and mucous membranes is fundamental for the homeostasis of the body and thus it is imperative to treat any lesion quickly and correctly. In this view, polyphenols might assist and enhance a successful wound healing process by reducing the inflammatory cascade and the production of free radicals. However, they suffer from disadvantageous physico-chemical properties, leading to restricted clinical use. In this work, a complex mixture of PEGylated lipid, Glyceryl monoester, 18-ß-Glycyrrhetinic Acid and Menthol was designed to entrap Resveratrol (RSV) as the active ingredient and further produce lipid nanoparticles (LNPs) by homogenization followed by high-frequency sonication. The nanosystem was properly characterized in terms of particle size (DLS, SEM), zeta potential, drug loading, antioxidant power (DPPH), release behaviour, cytocompatibility, wound healing and antibiofilm properties. The optimized lipid mixture was homogeneous, melted at 57-61 °C and encapsulated amorphous RSV (4.56 ± 0.04% w/w). The RSV-loaded LNPs were almost monodispersed (PDI: 0.267 ± 0.010), with nanometric size (162.86 ± 3.12 nm), scavenger properties and suitable DR% and LE% values (96.82 ± 1.34% and 95.17 ± 0.25%, respectively). The release studies were performed to simulate the wound conditions: 1-octanol to mimic the lipophilic domains of biological tissues (where the First Order kinetic was observed) and citrate buffer pH 5.5 according to the inflammatory wound exudate (where the Korsmeyer-Peppas kinetic was followed). The biological and microbiological evaluations highlighted fibroblast proliferation and migration effects as well as antibiofilm properties at extremely low doses (LNPs: 22 µg/mL, corresponding to RSV 5 µM). Thus, the proposed multicomponent LNPs could represent a valuable RSV delivery platform for wound healing purposes.


Assuntos
Lipossomos , Nanopartículas , Resveratrol/farmacologia , Lipossomos/farmacologia , Nanopartículas/química , Lipídeos/química , Proliferação de Células , Fibroblastos , Biofilmes , Tamanho da Partícula
3.
Pharmaceutics ; 15(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678905

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most prevailing and aggressive head and neck cancers, featuring high morbidity and mortality. The available conventional treatments suffer from several adverse effects and are often inefficient in terms of their survival rates. Thus, seeking novel therapeutic agents and adjuvants is of the utmost importance for modern society. Natural polyphenolic compounds have recently emerged as promising chemopreventive and anticancer agents. Specifically, the natural compound resveratrol (RSV) has recently gained momentum for this purpose. RSV is useful for treating OSCC due to its antiproliferative, antimetastatic, and proapoptotic effects. Additionally, RSV acts against tumor cells while synergically cooperating with chemotherapeutics, overcoming drug resistance phenomena. Despite these wide-spectrum effects, there are few specific investigations regarding RSV's effects against OSCC animal models that consider different routes and vehicles for the administration of RSV. Interestingly, an injectable RSV-loaded liposome-based formulation was proven to be effective against both in vitro and in vivo OSCC models, demonstrating that the development of RSV-loaded drug delivery systems for systemic and/or loco-regional applications may be the turning point in oral cancer treatment, leading to benefits from both RSV's properties as well as from targeted delivery. Given these premises, this review offers a comprehensive overview of the in vitro and in vivo effects of RSV and its main derivative, polydatin (PD), against OSCC-related cell lines and animal models, aiming to guide the scientific community in regard to RSV and PD use in the treatment of oral precancerous and cancerous lesions.

4.
Antioxidants (Basel) ; 11(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552701

RESUMO

In an ever-growing perspective of circular economy, the development of conscious, sustainable and environmental-friendly strategies to recycle the waste products is the key point. The scope of this work was to validate the waste bentonite from the grape processing industries as a precious matrix to extract polyphenols by applying a waste-to-market approach aimed at producing novel functional excipients. The waste bentonite was recovered after the fining process and opportunely pre-treated. Subsequently, both the freeze dried and the so-called "wet" bentonites were subjected to maceration. PEG200 and Propylene Glycol were selected as solvents due to their ability to dissolve polyphenols and their wide use in the cosmetic/pharmaceutical field. The extracts were evaluated in terms of yield, density, pH after water-dilution, total phenolic (Folin-Ciocalteu) and protein (Bradford) contents, antioxidant power (DPPH), amount of some representative polyphenols (HPLC-DAD), cytocompatibility and stability. Both solvents validated the bentonite as a valuable source of polyphenols and led to colored fluids characterized by an acidic pH after water-dilution. The best extract was obtained from the wet bentonite with PEG200 and highlighted the highest phenolic content and consequently the strongest antioxidant activity. Additionally, it displayed proliferative properties and resulted almost stable over time. Hence, it might be directly used as polyphenols-enriched functional novel raw material for cosmetic and pharmaceutics purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...