Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0251130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956835

RESUMO

Polar bears are of international conservation concern due to climate change but are difficult to study because of low densities and an expansive, circumpolar distribution. In a collaborative U.S.-Russian effort in spring of 2016, we used aerial surveys to detect and estimate the abundance of polar bears on sea ice in the Chukchi Sea. Our surveys used a combination of thermal imagery, digital photography, and human observations. Using spatio-temporal statistical models that related bear and track densities to physiographic and biological covariates (e.g., sea ice extent, resource selection functions derived from satellite tags), we predicted abundance and spatial distribution throughout our study area. Estimates of 2016 abundance ([Formula: see text]) ranged from 3,435 (95% CI: 2,300-5,131) to 5,444 (95% CI: 3,636-8,152) depending on the proportion of bears assumed to be missed on the transect line during Russian surveys (g(0)). Our point estimates are larger than, but of similar magnitude to, a recent estimate for the period 2008-2016 ([Formula: see text]; 95% CI 1,522-5,944) derived from an integrated population model applied to a slightly smaller area. Although a number of factors (e.g., equipment issues, differing platforms, low sample sizes, size of the study area relative to sampling effort) required us to make a number of assumptions to generate estimates, it establishes a useful lower bound for abundance, and suggests high spring polar bear densities on sea ice in Russian waters south of Wrangell Island. With future improvements, we suggest that springtime aerial surveys may represent a plausible avenue for studying abundance and distribution of polar bears and their prey over large, remote areas.


Assuntos
Ursidae , Animais , Regiões Árticas , Feminino , Masculino , Densidade Demográfica , Análise Espaço-Temporal
3.
PLoS One ; 10(1): e112021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562525

RESUMO

We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Estruturas Genéticas , Variação Genética , Ursidae/genética , Animais , Regiões Árticas , DNA Mitocondrial/química , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Genótipo , Geografia , Haplótipos , Camada de Gelo , Repetições de Microssatélites/genética , Filogenia , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Ursidae/classificação , Ursidae/crescimento & desenvolvimento
4.
Sci Total Environ ; 409(14): 2734-45, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21636111

RESUMO

Organochlorine compounds total DDT (ΣDDT), total HCH isomers (ΣHCH), toxaphenes (sum of Parlar 26, 50, 62), mirex, endrin, methoxychlor, total chlorinated benzenes (ΣCBz), total chlordane compounds (ΣCHL), polychlorinated biphenyls (total of 56 congeners; ΣPCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (sum of 7 tri- to hepta congeners; ΣPBDEs) were analysed in the blubber of adult ringed seals from the four areas of the Russian Arctic (White Sea, Barents Sea, Kara Sea and Chukchi Sea) collected in 2001-2005. Ringed seals from the south-western part of the Kara Sea (Dikson Island - Yenisei estuary) were the most contaminated with ΣDDTs, ΣPCBs, ΣCHL, and mirex as compared with those found in the other three areas of Russian Arctic, while the highest mean concentrations of ΣHCHs and PCDD/Fs were found in the blubber of ringed seals from the Chukchi Sea and the White Sea, respectively. Among all organochlorine compounds measured in ringed seals from the European part of the Russian Arctic, concentrations of ΣDDT and ΣPCBs only were higher as compared with the other Arctic regions. Levels of all other organochlorine compounds were similar or lower than in seals from Svalbard, Alaska, the Canadian Arctic and Greenland. ΣPBDEs were found in all ringed seal samples analysed. There were no significant differences between ΣPBDE concentrations found in the blubber of ringed seals from the three studied areas of the European part of the Russian Arctic, while PBDE contamination level in ringed seals from the Chukchi Sea was 30-50 times lower. ΣPBDE levels in the blubber of seals from the European part of the Russian Arctic are slightly higher than in ringed seals from the Canadian Arctic, Alaska, and western Greenland but lower compared to ringed seals from Svalbard and eastern Greenland.


Assuntos
Hidrocarbonetos Clorados/metabolismo , Focas Verdadeiras/metabolismo , Poluentes Químicos da Água/metabolismo , Tecido Adiposo/metabolismo , Animais , Regiões Árticas , Derivados de Benzeno/metabolismo , Benzofuranos/metabolismo , Clordano/metabolismo , DDT/metabolismo , Dibenzofuranos Policlorados , Endrin/metabolismo , Monitoramento Ambiental , Feminino , Hexaclorocicloexano/metabolismo , Masculino , Metoxicloro/metabolismo , Mirex/metabolismo , Bifenilos Policlorados/metabolismo , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/metabolismo , Federação Russa , Toxafeno/metabolismo , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...