Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Med Genomics ; 16(1): 301, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996899

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic disorder caused by variants in genes involved in the function of the primary cilium. We have harnessed genomics to identify BBS and ophthalmic technologies to describe novel features of BBS. CASE PRESENTATION: A patient with an unclear diagnosis of syndromic type 2 diabetes mellitus, another affected sibling and unaffected siblings and parents were sequenced using DNA extracted from saliva samples. Corneal confocal microscopy (CCM) and retinal spectral domain optical coherence tomography (SD-OCT) were used to identify novel ophthalmic features in these patients. The two affected individuals had a homozygous variant in C8orf37 (p.Trp185*). SD-OCT and CCM demonstrated a marked and patchy reduction in the retinal nerve fiber layer thickness and loss of corneal nerve fibers, respectively. CONCLUSION: This report highlights the use of ophthalmic imaging to identify novel retinal and corneal abnormalities that extend the phenotype of BBS in a patient with syndromic type 2 diabetes.


Assuntos
Síndrome de Bardet-Biedl , Diabetes Mellitus Tipo 2 , Humanos , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retina , Fenótipo , Fibras Nervosas , Mutação , Proteínas/genética
2.
Cell Genom ; 3(1): 100218, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777185

RESUMO

Natural human knockouts of genes associated with desirable outcomes, such as PCSK9 with low levels of LDL-cholesterol, can lead to the discovery of new drug targets and treatments. Rare loss-of-function variants are more likely to be found in the homozygous state in consanguineous populations, and deep molecular phenotyping of blood samples from homozygous carriers can help to discriminate between silent and functional variants. Here, we combined whole-genome sequencing with proteomics and metabolomics for 2,935 individuals from the Qatar Biobank (QBB) to evaluate the power of this approach for finding genes of clinical and pharmaceutical interest. As proof-of-concept, we identified a homozygous carrier of a very rare PCSK9 variant with extremely low circulating PCSK9 levels and low LDL. Our study demonstrates that the chances of finding such variants are about 168 times higher in QBB compared with GnomAD and emphasizes the potential of consanguineous populations for drug discovery.

3.
Hum Mol Genet ; 32(6): 907-916, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36168886

RESUMO

Polygenic scores (PGS) can identify individuals at risk of adverse health events and guide genetics-based personalized medicine. However, it is not clear how well PGS translate between different populations, limiting their application to well-studied ethnicities. Proteins are intermediate traits linking genetic predisposition and environmental factors to disease, with numerous blood circulating protein levels representing functional readouts of disease-related processes. We hypothesized that studying the genetic architecture of a comprehensive set of blood-circulating proteins between a European and an Arab population could shed fresh light on the translatability of PGS to understudied populations. We therefore conducted a genome-wide association study with whole-genome sequencing data using 1301 proteins measured on the SOMAscan aptamer-based affinity proteomics platform in 2935 samples of Qatar Biobank and evaluated the replication of protein quantitative traits (pQTLs) from European studies in an Arab population. Then, we investigated the colocalization of shared pQTL signals between the two populations. Finally, we compared the performance of protein PGS derived from a Caucasian population in a European and an Arab cohort. We found that the majority of shared pQTL signals (81.8%) colocalized between both populations. About one-third of the genetic protein heritability was explained by protein PGS derived from a European cohort, with protein PGS performing ~20% better in Europeans when compared to Arabs. Our results are relevant for the translation of PGS to non-Caucasian populations, as well as for future efforts to extend genetic research to understudied populations.


Assuntos
Árabes , Locos de Características Quantitativas , População Branca , Humanos , Árabes/genética , Estudo de Associação Genômica Ampla , População Branca/genética , Genética Populacional
4.
PLoS One ; 17(6): e0267704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657798

RESUMO

We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.


Assuntos
Nefropatias , Transplante de Rim , Aloenxertos/patologia , Fibroblastos/patologia , Fibrose , Rejeição de Enxerto , Humanos , Rim/patologia , Nefropatias/patologia , Doadores Vivos , Transcriptoma
5.
Metabolites ; 12(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736429

RESUMO

Genome-wide association studies (GWAS) with non-targeted metabolomics have identified many genetic loci of biomedical interest. However, metabolites with a high degree of missingness, such as drug metabolites and xenobiotics, are often excluded from such studies due to a lack of statistical power and higher uncertainty in their quantification. Here we propose ratios between related drug metabolites as GWAS phenotypes that can drastically increase power to detect genetic associations between pairs of biochemically related molecules. As a proof-of-concept we conducted a GWAS with 520 individuals from the Qatar Biobank for who at least five of the nine available acetaminophen metabolites have been detected. We identified compelling evidence for genetic variance in acetaminophen glucuronidation and methylation by UGT2A15 and COMT, respectively. Based on the metabolite ratio association profiles of these two loci we hypothesized the chemical structure of one of their products or substrates as being 3-methoxyacetaminophen, which we then confirmed experimentally. Taken together, our study suggests a novel approach to analyze metabolites with a high degree of missingness in a GWAS setting with ratios, and it also demonstrates how pharmacological pathways can be mapped out using non-targeted metabolomics measurements in large population-based studies.

6.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623332

RESUMO

We studied a child with severe viral, bacterial, fungal, and parasitic diseases, who was homozygous for a loss-of-function mutation of REL, encoding c-Rel, which is selectively expressed in lymphoid and myeloid cells. The patient had low frequencies of NK, effector memory cells reexpressing CD45RA (Temra) CD8+ T cells, memory CD4+ T cells, including Th1 and Th1*, Tregs, and memory B cells, whereas the counts and proportions of other leukocyte subsets were normal. Functional deficits of myeloid cells included the abolition of IL-12 and IL-23 production by conventional DC1s (cDC1s) and monocytes, but not cDC2s. c-Rel was also required for induction of CD86 expression on, and thus antigen-presenting cell function of, cDCs. Functional deficits of lymphoid cells included reduced IL-2 production by naive T cells, correlating with low proliferation and survival rates and poor production of Th1, Th2, and Th17 cytokines by memory CD4+ T cells. In naive CD4+ T cells, c-Rel is dispensable for early IL2 induction but contributes to later phases of IL2 expression. The patient's naive B cells displayed impaired MYC and BCL2L1 induction, compromising B cell survival and proliferation and preventing their differentiation into Ig-secreting plasmablasts. Inherited c-Rel deficiency disrupts the development and function of multiple myeloid and lymphoid cells, compromising innate and adaptive immunity to multiple infectious agents.


Assuntos
Genes rel , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Proteínas Proto-Oncogênicas c-rel/deficiência , Proteínas Proto-Oncogênicas c-rel/genética , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Criança , Consanguinidade , Feminino , Transplante de Células-Tronco Hematopoéticas , Homozigoto , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Ativação Linfocitária , Linfócitos/classificação , Linfócitos/imunologia , Mutação , Células Mieloides/imunologia , Doenças da Imunodeficiência Primária/terapia , Isoformas de Proteínas
7.
PLoS One ; 16(4): e0249930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857204

RESUMO

Kidney transplantation is the treatment of choice for patients with end-stage kidney failure, but transplanted allograft could be affected by viral and bacterial infections and by immune rejection. The standard test for the diagnosis of acute pathologies in kidney transplants is kidney biopsy. However, noninvasive tests would be desirable. Various methods using different techniques have been developed by the transplantation community. But these methods require improvements. We present here a cost-effective method for kidney rejection diagnosis that estimates donor/recipient-specific DNA fraction in recipient urine by sequencing urinary cell DNA. We hypothesized that in the no-pathology stage, the largest tissue types present in recipient urine are donor kidney cells, and in case of rejection, a larger number of recipient immune cells would be observed. Extensive in-silico simulation was used to tune the sequencing parameters: number of variants and depth of coverage. Sequencing of DNA mixture from 2 healthy individuals showed the method is highly predictive (maximum error < 0.04). We then demonstrated the insignificant impact of familial relationship and ethnicity using an in-house and public database. Lastly, we performed deep DNA sequencing of urinary cell pellets from 32 biopsy-matched samples representing two pathology groups: acute rejection (AR, 11 samples) and acute tubular injury (ATI, 12 samples) and 9 samples with no pathology. We found a significant association between the donor/recipient-specific DNA fraction in the two pathology groups compared to no pathology (P = 0.0064 for AR and P = 0.026 for ATI). We conclude that deep DNA sequencing of urinary cells from kidney allograft recipients offers a noninvasive means of diagnosing acute pathologies in the human kidney allograft.


Assuntos
DNA/química , Sequenciamento de Nucleotídeos em Larga Escala , Transplante de Rim , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Estudos de Casos e Controles , DNA/urina , Bases de Dados Genéticas , Feminino , Rejeição de Enxerto/diagnóstico , Humanos , Rim/patologia , Falência Renal Crônica/terapia , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Doadores de Tecidos , Transplante Homólogo , Urina/citologia
8.
Nat Commun ; 12(1): 1250, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623009

RESUMO

Clinical laboratory tests play a pivotal role in medical decision making, but little is known about their genetic variability between populations. We report a genome-wide association study with 45 clinically relevant traits from the population of Qatar using a whole genome sequencing approach in a discovery set of 6218 individuals and replication in 7768 subjects. Trait heritability is more similar between Qatari and European populations (r = 0.81) than with Africans (r = 0.44). We identify 281 distinct variant-trait-associations at genome wide significance that replicate known associations. Allele frequencies for replicated loci show higher correlations with European (r = 0.94) than with African (r = 0.85) or Japanese (r = 0.80) populations. We find differences in linkage disequilibrium patterns and in effect sizes of the replicated loci compared to previous reports. We also report 17 novel and Qatari-predominate signals providing insights into the biological pathways regulating these traits. We observe that European-derived polygenic scores (PGS) have reduced predictive performance in the Qatari population which could have implications for the translation of PGS between populations and their future application in precision medicine.


Assuntos
Genética Populacional , Genoma Humano , Estudo de Associação Genômica Ampla , Característica Quantitativa Herdável , Análise de Sequência de DNA , Bancos de Espécimes Biológicos , Frequência do Gene/genética , Loci Gênicos , Humanos , Japão , Desequilíbrio de Ligação/genética , Herança Multifatorial/genética , Análise de Componente Principal , Catar
9.
Eur J Hum Genet ; 28(12): 1753-1762, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32651550

RESUMO

Post-transcriptional modification of RNA (RNA editing, RNAe) results in differences between the RNA transcript and the genomic DNA sequence (RDD). Enzymatic modification of adenosine to inosine (A2I) by ADAR is the most studied type of RNAe. However, few genetic association studies with A2I RNAe events have been conducted. Some studies have analyzed the inter-population RNAe-QTL diversity in humans, but the sample size of these studies was limited. Other types of RNA and DNA differences have been reported but are largely understudied. Here, we report a comprehensive analysis of all types of RDD, based on two independent datasets. We found that A2I was by far the most observed type of RDD. Moreover, manual curation suggests that A2I is likely the only enzymatically driven RNAe type observed in blood derived DNA, all other non-A2I RDD could either be attributed to sequencing and processing artifacts, or are a result of somatic DNA rearrangements. We then conducted an in-cis genetic association study and identified 472 genetic associations (RNAe-QTL), that were replicated in both datasets. We confirm the potential effect of the RNAe-QTL on RNA structure by showing that allele specific RNAe occurs in heterozygotes. Although the generally assumed function of RNAe is to destabilize double stranded RNA structure, we found clear evidence for the potential additional involvement of RNAe in maintaining RNA hairpin that has been altered by the RNAe-QTL. Our study confirms, in two independent datasets, the potential role of RNAe in maintaining RNA structure in the presence of genetic variation.


Assuntos
Locos de Características Quantitativas , Edição de RNA/genética , Estabilidade de RNA/genética , RNA/genética , Adulto , Idoso , Alelos , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA/química , RNA/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(33): 16463-16472, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346092

RESUMO

Heterozygous in-frame mutations in coding regions of human STAT3 underlie the only known autosomal dominant form of hyper IgE syndrome (AD HIES). About 5% of familial cases remain unexplained. The mutant proteins are loss-of-function and dominant-negative when tested following overproduction in recipient cells. However, the production of mutant proteins has not been detected and quantified in the cells of heterozygous patients. We report a deep intronic heterozygous STAT3 mutation, c.1282-89C>T, in 7 relatives with AD HIES. This mutation creates a new exon in the STAT3 complementary DNA, which, when overexpressed, generates a mutant STAT3 protein (D427ins17) that is loss-of-function and dominant-negative in terms of tyrosine phosphorylation, DNA binding, and transcriptional activity. In immortalized B cells from these patients, the D427ins17 protein was 2 kDa larger and 4-fold less abundant than wild-type STAT3, on mass spectrometry. The patients' primary B and T lymphocytes responded poorly to STAT3-dependent cytokines. These findings are reminiscent of the impaired responses of leukocytes from other patients with AD HIES due to typical STAT3 coding mutations, providing further evidence for the dominance of the mutant intronic allele. These findings highlight the importance of sequencing STAT3 introns in patients with HIES without candidate variants in coding regions and essential splice sites. They also show that AD HIES-causing STAT3 mutant alleles can be dominant-negative even if the encoded protein is produced in significantly smaller amounts than wild-type STAT3.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Job/genética , Sítios de Splice de RNA/genética , Fator de Transcrição STAT3/genética , Adulto , Alelos , Linfócitos B/metabolismo , Linfócitos B/patologia , Pré-Escolar , Éxons/genética , Feminino , Regulação da Expressão Gênica/genética , Heterozigoto , Humanos , Síndrome de Job/patologia , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Linfócitos T/metabolismo , Linfócitos T/patologia
11.
Sci Immunol ; 3(24)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907691

RESUMO

Heterozygosity for human signal transducer and activator of transcription 3 (STAT3) dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the STAT3 promoter. The patients' cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with STAT3 DN mutations, ZNF341-deficient patients lack T helper 17 (TH17) cells, have an excess of TH2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the STAT3 transcription-dependent autoinduction and sustained activity of STAT3.


Assuntos
Regulação da Expressão Gênica/imunologia , Síndrome de Job/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Transcrição Gênica/imunologia , Adolescente , Adulto , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Núcleo Celular/metabolismo , Consanguinidade , Citocinas/imunologia , Citocinas/metabolismo , Éxons/genética , Feminino , Genes Recessivos/genética , Genes Recessivos/imunologia , Homozigoto , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Síndrome de Job/sangue , Síndrome de Job/imunologia , Mutação com Perda de Função , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linhagem , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma , Adulto Jovem , Dedos de Zinco/genética
12.
PLoS Negl Trop Dis ; 12(4): e0006429, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708969

RESUMO

Buruli ulcer (BU), the third most frequent mycobacteriosis worldwide, is a neglected tropical disease caused by Mycobacterium ulcerans. We report the clinical description and extensive genetic analysis of a consanguineous family from Benin comprising two cases of unusually severe non-ulcerative BU. The index case was the most severe of over 2,000 BU cases treated at the Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli, Pobe, Benin, since its opening in 2003. The infection spread to all limbs with PCR-confirmed skin, bone and joint infections. Genome-wide linkage analysis of seven family members was performed and whole-exome sequencing of both patients was obtained. A 37 kilobases homozygous deletion confirmed by targeted resequencing and located within a linkage region on chromosome 8 was identified in both patients but was absent from unaffected siblings. We further assessed the presence of this deletion on genotyping data from 803 independent local individuals (402 BU cases and 401 BU-free controls). Two BU cases were predicted to be homozygous carriers while none was identified in the control group. The deleted region is located close to a cluster of beta-defensin coding genes and contains a long non-coding (linc) RNA gene previously shown to display highest expression values in the skin. This first report of a microdeletion co-segregating with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease.


Assuntos
Úlcera de Buruli/genética , Cromossomos Humanos Par 8/genética , Mycobacterium ulcerans/fisiologia , Adolescente , Benin , Úlcera de Buruli/microbiologia , Pré-Escolar , Consanguinidade , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Deleção de Sequência , Sequenciamento do Exoma
13.
Am J Transplant ; 18(10): 2429-2442, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29659169

RESUMO

Advances in bioinformatics allow identification of single nucleotide polymorphisms (variants) from RNA sequence data. In an allograft biopsy, 2 genomes contribute to the RNA pool, 1 from the donor organ and the other from the infiltrating recipient's cells. We hypothesize that imbalances in genetic variants of RNA sequence data of kidney allograft biopsies provide an objective measure of cellular infiltration of the allograft. We performed mRNA sequencing of 40 kidney allograft biopsies, selected to represent a comprehensive range of diagnostic categories. We analyzed the sequencing reads of these biopsies and of 462 lymphoblastoid cell lines from the 1000 Genomes Project, for RNA variants. The ratio of heterozygous to nonreference genome homozygous variants (Het/Hom ratio) on all autosomes was determined for each sample, and the estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) score was computed as a complementary estimate of the degree of cellular infiltration into biopsies. The Het/Hom ratios (P = .02) and the ESTIMATE scores (P < .001) were associated with the biopsy diagnosis. Both measures correlated significantly (r = .67, P < .0001), even though the Het/Hom ratio is based on mRNA sequence variation, while the ESTIMATE score uses mRNA expression. Het/Hom ratio and the ESTIMATE score may offer unbiased and quantitative parameters for characterizing cellular traffic into human kidney allografts.


Assuntos
Biomarcadores/análise , Rejeição de Enxerto/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transplante de Rim/efeitos adversos , Polimorfismo de Nucleotídeo Único , Adulto , Aloenxertos , Biologia Computacional , Feminino , Rejeição de Enxerto/etiologia , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade
14.
J Exp Med ; 214(7): 1949-1972, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28606988

RESUMO

MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts and intermediates. We studied a child with life-threatening, recurrent respiratory tract infections, caused by viruses including human rhinovirus (HRV), influenza virus, and respiratory syncytial virus (RSV). We identified in her a homozygous missense mutation in IFIH1 that encodes MDA5. Mutant MDA5 was expressed but did not recognize the synthetic MDA5 agonist/(ds)RNA mimic polyinosinic-polycytidylic acid. When overexpressed, mutant MDA5 failed to drive luciferase activity from the IFNB1 promoter or promoters containing ISRE or NF-κB sequence motifs. In respiratory epithelial cells or fibroblasts, wild-type but not knockdown of MDA5 restricted HRV infection while increasing IFN-stimulated gene expression and IFN-ß/λ. However, wild-type MDA5 did not restrict influenza virus or RSV replication. Moreover, nasal epithelial cells from the patient, or fibroblasts gene-edited to express mutant MDA5, showed increased replication of HRV but not influenza or RSV. Thus, human MDA5 deficiency is a novel inborn error of innate and/or intrinsic immunity that causes impaired (ds)RNA sensing, reduced IFN induction, and susceptibility to the common cold virus.


Assuntos
Helicase IFIH1 Induzida por Interferon/genética , Mutação , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , Antivirais/farmacologia , Sequência de Bases , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica/efeitos dos fármacos , Genes Recessivos/genética , Heterozigoto , Homozigoto , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon/deficiência , Interferons/farmacologia , Masculino , Linhagem
15.
J Clin Invest ; 127(5): 1991-2006, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414293

RESUMO

Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.


Assuntos
Proteínas de Ligação a DNA/deficiência , Doenças Genéticas Inatas , Transtornos do Crescimento , Síndromes de Imunodeficiência , Células Matadoras Naturais , Neutropenia , Animais , Proteínas de Ligação a DNA/imunologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/imunologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/imunologia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Lactente , Masculino , Camundongos , Neutropenia/genética , Neutropenia/imunologia
16.
Cell ; 168(5): 789-800.e10, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235196

RESUMO

The molecular basis of the incomplete penetrance of monogenic disorders is unclear. We describe here eight related individuals with autosomal recessive TIRAP deficiency. Life-threatening staphylococcal disease occurred during childhood in the proband, but not in the other seven homozygotes. Responses to all Toll-like receptor 1/2 (TLR1/2), TLR2/6, and TLR4 agonists were impaired in the fibroblasts and leukocytes of all TIRAP-deficient individuals. However, the whole-blood response to the TLR2/6 agonist staphylococcal lipoteichoic acid (LTA) was abolished only in the index case individual, the only family member lacking LTA-specific antibodies (Abs). This defective response was reversed in the patient, but not in interleukin-1 receptor-associated kinase 4 (IRAK-4)-deficient individuals, by anti-LTA monoclonal antibody (mAb). Anti-LTA mAb also rescued the macrophage response in mice lacking TIRAP, but not TLR2 or MyD88. Thus, acquired anti-LTA Abs rescue TLR2-dependent immunity to staphylococcal LTA in individuals with inherited TIRAP deficiency, accounting for incomplete penetrance. Combined TIRAP and anti-LTA Ab deficiencies underlie staphylococcal disease in this patient.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/deficiência , Receptores de Interleucina-1/deficiência , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Ácidos Teicoicos/metabolismo , Imunidade Adaptativa , Criança , Feminino , Fibroblastos/metabolismo , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Linhagem , Fagócitos/metabolismo , Mutação Puntual , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Receptores de Interleucina-1/análise , Receptores de Interleucina-1/genética , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Teicoicos/imunologia , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
17.
J Allergy Clin Immunol ; 138(4): 957-969, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27720020

RESUMO

The advent of next-generation sequencing (NGS) in 2010 has transformed medicine, particularly the growing field of inborn errors of immunity. NGS has facilitated the discovery of novel disease-causing genes and the genetic diagnosis of patients with monogenic inborn errors of immunity. Whole-exome sequencing (WES) is presently the most cost-effective approach for research and diagnostics, although whole-genome sequencing offers several advantages. The scientific or diagnostic challenge consists in selecting 1 or 2 candidate variants among thousands of NGS calls. Variant- and gene-level computational methods, as well as immunologic hypotheses, can help narrow down this genome-wide search. The key to success is a well-informed genetic hypothesis on 3 key aspects: mode of inheritance, clinical penetrance, and genetic heterogeneity of the condition. This determines the search strategy and selection criteria for candidate alleles. Subsequent functional validation of the disease-causing effect of the candidate variant is critical. Even the most up-to-date dry lab cannot clinch this validation without a seasoned wet lab. The multifariousness of variations entails an experimental rigor even greater than traditional Sanger sequencing-based approaches in order not to assign a condition to an irrelevant variant. Finding the needle in the haystack takes patience, prudence, and discernment.


Assuntos
Exoma/genética , Doenças Genéticas Inatas , Genoma Humano/genética , Síndromes de Imunodeficiência/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
18.
J Exp Med ; 213(11): 2413-2435, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27647349

RESUMO

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell-intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients' B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


Assuntos
Alelos , Linfócitos B/imunologia , Proteínas dos Microfilamentos/genética , Mutação/genética , Linfócitos T/imunologia , Adolescente , Adulto , Sequência de Bases , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Criança , Pré-Escolar , Dimerização , Feminino , Células HEK293 , Humanos , Memória Imunológica , Imunofenotipagem , Leucócitos/patologia , Masculino , NF-kappa B/metabolismo , Linhagem , Fenótipo , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Células Th17/imunologia , Células Th2/imunologia , Adulto Jovem
19.
Nat Genet ; 48(9): 1071-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428751

RESUMO

The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia, has resulted in an elevated burden of recessive disease. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.


Assuntos
Povo Asiático/genética , Doença/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genética Populacional , População Branca/genética , Estudos de Coortes , Consanguinidade , Exoma/genética , Genes Recessivos , Genoma Humano , Estudo de Associação Genômica Ampla , Homozigoto , Migração Humana , Humanos , Oriente Médio
20.
Proc Natl Acad Sci U S A ; 113(24): 6713-8, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247391

RESUMO

Principal component analysis (PCA), homozygosity rate estimations, and linkage studies in humans are classically conducted through genome-wide single-nucleotide variant arrays (GWSA). We compared whole-exome sequencing (WES) and GWSA for this purpose. We analyzed 110 subjects originating from different regions of the world, including North Africa and the Middle East, which are poorly covered by public databases and have high consanguinity rates. We tested and applied a number of quality control (QC) filters. Compared with GWSA, we found that WES provided an accurate prediction of population substructure using variants with a minor allele frequency > 2% (correlation = 0.89 with the PCA coordinates obtained by GWSA). WES also yielded highly reliable estimates of homozygosity rates using runs of homozygosity with a 1,000-kb window (correlation = 0.94 with the estimates provided by GWSA). Finally, homozygosity mapping analyses in 15 families including a single offspring with high homozygosity rates showed that WES provided 51% less genome-wide linkage information than GWSA overall but 97% more information for the coding regions. At the genome-wide scale, 76.3% of linked regions were found by both GWSA and WES, 17.7% were found by GWSA only, and 6.0% were found by WES only. For coding regions, the corresponding percentages were 83.5%, 7.4%, and 9.1%, respectively. With appropriate QC filters, WES can be used for PCA and adjustment for population substructure, estimating homozygosity rates in individuals, and powerful linkage analyses, particularly in coding regions.


Assuntos
Consanguinidade , Ligação Genética , Estudo de Associação Genômica Ampla , Homozigoto , Feminino , Humanos , Masculino , Oriente Médio , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...