Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34440219

RESUMO

The purpose of this study was to investigate, in vitro and in vivo, the suitability of chitosan (CHS) scaffolds produced by the net-shape-nonwoven (NSN) technology, for use as bone graft substitutes in a critical-size femoral bone defect in rats. For in vitro investigations, scaffolds made of CHS, mineralized collagen (MCM), or human cancellous bone allograft (CBA) were seeded with human telomerase-immortalized mesenchymal stromal cells (hTERT-MSC), incubated for 14 days, and thereafter evaluated for proliferation and osteogenic differentiation. In vivo, CHS, MCM and CBA scaffolds were implanted into 5 mm critical-size femoral bone defects in rats. After 12 weeks, the volume of newly formed bone was determined by microcomputed tomography (µCT), while the degree of defect healing, as well as vascularization and the number of osteoblasts and osteoclasts, was evaluated histologically. In vitro, CHS scaffolds showed significantly higher osteogenic properties, whereas treatment with CHS, in vivo, led to a lower grade of bone-healing compared to CBA and MCM. While chitosan offers a completely new field of scaffold production by fibers, these scaffolds will have to be improved in the future, regarding mechanical stability and osteoconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...