Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6642): eabn7625, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37079685

RESUMO

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.


Assuntos
Proteína Quinase CDC2 , Carcinógenos , Melanoma , Estabilidade de RNA , RNA Nuclear , Neoplasias Cutâneas , Animais , Proteína Quinase CDC2/genética , Melanoma/genética , Mutação , RNA Nuclear/genética , Neoplasias Cutâneas/genética , Peixe-Zebra , Humanos
2.
Nucleic Acids Res ; 48(10): 5656-5669, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329777

RESUMO

Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of the enzyme that installs O-GlcNAc (O-GlcNAc transferase, or OGT) and the enzyme that removes O-GlcNAc (O-GlcNAcase, or OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell's transcriptional regime.


Assuntos
Acetilglucosamina/metabolismo , Glicosídeo Hidrolases/genética , Íntrons , N-Acetilglucosaminiltransferases/genética , Splicing de RNA , Linhagem Celular , Glicosídeo Hidrolases/metabolismo , Células HEK293 , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq
3.
Sci Rep ; 9(1): 10019, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31273219

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Nat Commun ; 9(1): 4328, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337527

RESUMO

The 5' and 3' termini of RNA play important roles in many cellular processes. Using Förster resonance energy transfer (FRET), we show that mRNAs and lncRNAs have an intrinsic propensity to fold in the absence of proteins into structures in which the 5' end and 3' end are ≤7 nm apart irrespective of mRNA length. Computational estimates suggest that the inherent proximity of the ends is a universal property of most mRNA and lncRNA sequences. Only guanosine-depleted RNA sequences with low sequence complexity are unstructured and exhibit end-to-end distances expected for the random coil conformation of RNA. While the biological implications remain to be explored, short end-to-end distances could facilitate the binding of protein factors that regulate translation initiation by bridging mRNA 5' and 3' ends. Furthermore, our studies provide the basis for measuring, computing and manipulating end-to-end distances and secondary structure in RNA in research and biotechnology.


Assuntos
Conformação de Ácido Nucleico , RNA Longo não Codificante/química , RNA Mensageiro/química , Algoritmos , Sequência de Bases , Transferência Ressonante de Energia de Fluorescência , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética
5.
RNA ; 24(11): 1555-1567, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30097542

RESUMO

Nucleic acids can be designed to be nano-machines, pharmaceuticals, or probes. RNA secondary structures can form the basis of self-assembling nanostructures. There are only four natural RNA bases, therefore it can be difficult to design sequences that fold to a single, specified structure because many other structures are often possible for a given sequence. One approach taken by state-of-the-art sequence design methods is to select sequences that fold to the specified structure using stochastic, iterative refinement. The goal of this work is to accelerate design. Many existing iterative methods select and refine sequences one base pair and one unpaired nucleotide at a time. Here, the hypothesis that sequences can be preselected in order to accelerate design was tested. To this aim, a database was built of helix sequences that demonstrate thermodynamic features found in natural sequences and that also have little tendency to cross-hybridize. Additionally, a database was assembled of RNA loop sequences with low helix-formation propensity and little tendency to cross-hybridize with either the helices or other loops. These databases of preselected sequences accelerate the selection of sequences that fold with minimal ensemble defect by replacing some of the trial and error of current refinement approaches. When using the database of preselected sequences as compared to randomly chosen sequences, sequences for natural structures are designed 36 times faster, and random structures are designed six times faster. The sequences selected with the aid of the database have similar ensemble defect as those sequences selected at random. The sequence database is part of RNAstructure package at http://rna.urmc.rochester.edu/RNAstructure.html.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Dobramento de RNA , Análise de Sequência de RNA , Termodinâmica
6.
Sci Rep ; 8(1): 1630, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374238

RESUMO

Candida albicans is a diploid fungus and a predominant opportunistic human pathogen. Notably, C. albicans employs reversible chromosomal aneuploidies as a means of survival in adverse environments. We previously characterized transcription on the monosomic chromosome 5 (Ch5) that arises with adaptation to growth on the toxic sugar sorbose in the mutant Sor125(55). We now extend this analysis to the trisomic hybrid Ch4/7 within Sor125(55) and a diverse group of three mutants harboring a single Ch5. We find a similar pattern of transcriptional changes on either type of aneuploid chromosome within these mutants wherein expression of many genes follows chromosome ploidy, consistent with a direct mechanism to regulate genes important for adaptation to growth. In contrast, a significant number of genes are expressed at the disomic level, implying distinct mechanisms compensating for gene dose on monosomic or trisomic chromosomes consistent with maintaining cell homeostasis. Finally, we find evidence for an additional mechanism that elevates expression of genes on normal disomic Ch4 and Ch7 in mutants to levels commensurate with that found on the trisomic Ch4/7b in Sor125(55). Several of these genes are similarly differentially regulated among mutants, suggesting they play key functions in either maintaining aneuploidy or adaptation to growth conditions.


Assuntos
Adaptação Biológica , Aneuploidia , Candida albicans/genética , Cromossomos Fúngicos , Regulação da Expressão Gênica , Sorbose/toxicidade , Transcrição Gênica , Candida albicans/efeitos dos fármacos
7.
Viruses ; 9(5)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28445416

RESUMO

The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.


Assuntos
RNA/química , RNA/metabolismo , Retroelementos , Saccharomyces cerevisiae/genética , Dimerização , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Iniciação Traducional da Cadeia Peptídica , RNA Viral/genética , Retroviridae/genética , Transcrição Reversa , Transcrição Gênica
8.
Methods Mol Biol ; 1490: 177-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27665599

RESUMO

Dynamic programming methods for predicting RNA secondary structure often use thermodynamics and experimental restraints and/or constraints to limit folding space. Chemical mapping results typically restrain certain nucleotides not to be in AU or GC pairs. Two-dimensional nuclear magnetic resonance (NMR) spectra can reveal the order of AU, GC, and GU pairs in double helixes. This chapter describes a program, NMR-assisted prediction of secondary structure and chemical shifts (NAPSS-CS), that constrains possible secondary structures on the basis of the NMR determined order and 5'-3' direction of AU, GC, and GU pairs in helixes. NAPSS-CS minimally requires input of the order of base pairs as determined from nuclear Overhauser effect spectroscopy (NOESY) of imino protons. The program deduces the 5'-3' direction of the base pairs if certain chemical shifts are also input. Secondary structures predicted by the program provide assignments of input chemical shifts to particular nucleotides in the sequence, thus facilitating an important step for determination of the three dimensional structure by NMR. The method is particularly useful for revealing pseudoknots and an example is provided. The method may also allow determination of secondary structures when a sequence folds into two structures that exchange slowly.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA/química , Animais , Biologia Computacional/métodos , Humanos , Navegador
9.
Biochemistry ; 54(45): 6769-82, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26451676

RESUMO

Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , RNA/química , Modelos Moleculares , Vírus da Leucemia Murina de Moloney/genética , Valor Preditivo dos Testes , Prótons , RNA Viral/química , Sensibilidade e Especificidade , Relação Estrutura-Atividade
10.
Nucleic Acids Res ; 41(Web Server issue): W471-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620284

RESUMO

RNAstructure is a software package for RNA secondary structure prediction and analysis. This contribution describes a new set of web servers to provide its functionality. The web server offers RNA secondary structure prediction, including free energy minimization, maximum expected accuracy structure prediction and pseudoknot prediction. Bimolecular secondary structure prediction is also provided. Additionally, the server can predict secondary structures conserved in either two homologs or more than two homologs. Folding free energy changes can be predicted for a given RNA structure using nearest neighbor rules. Secondary structures can be compared using circular plots or the scoring methods, sensitivity and positive predictive value. Additionally, structure drawings can be rendered as SVG, postscript, jpeg or pdf. The web server is freely available for public use at: http://rna.urmc.rochester.edu/RNAstructureWeb.


Assuntos
RNA/química , Software , Internet , Conformação de Ácido Nucleico
11.
Proc Natl Acad Sci U S A ; 110(14): 5498-503, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23503844

RESUMO

A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.


Assuntos
Algoritmos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico/química , Escherichia coli , RNA Ribossômico/isolamento & purificação , Termodinâmica
12.
Nucleic Acids Res ; 41(6): 3819-32, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23393189

RESUMO

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates >300 alternative exons that form secondary structures enriched in A-U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Compostos de Pirvínio/farmacologia , RNA Mensageiro/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/genética , Sequência de Bases , Éxons , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Compostos de Pirvínio/metabolismo , Edição de RNA , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/efeitos dos fármacos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo
13.
RNA ; 17(7): 1204-12, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21610212

RESUMO

Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados de Ácidos Nucleicos , Disseminação de Informação , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Arquivos , Sequência de Bases , Mapeamento Cromossômico/classificação , Humanos , Dados de Sequência Molecular , Ácidos Nucleicos/análise , Ácidos Nucleicos/química , RNA/análise , Projetos de Pesquisa , Estudos de Validação como Assunto
14.
RNA ; 16(10): 1870-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20699301

RESUMO

It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N(2)) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Biologia Computacional , Simulação por Computador , Modelos Moleculares , Dados de Sequência Molecular , RNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Software , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...