Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 63(11): 1636-1641, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36215570

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized cancer care, but many patients with poorly immunogenic tumors fail to benefit. Preclinical studies have shown that external beam radiotherapy (EBRT) can synergize with ICI to prompt remarkable tumor regression and even eradication. However, EBRT is poorly suited to widely disseminated disease. Targeted radiopharmaceutical therapy (TRT) selectively delivers radiation to both the primary tumor and the metastatic sites, and promising results achieved with this approach have led to regulatory approval of certain agents (e.g., 177Lu-PSMA-617/Pluvicto for metastatic prostate cancer). To further improve therapeutic outcomes, combining TRT and ICI is a burgeoning research area, both preclinically and in clinical trials. Here we introduce basic TRT radiobiology and survey emerging and clinically translated TRT agents that have been combined with ICI.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Masculino , Humanos , Inibidores de Checkpoint Imunológico , Radiobiologia
2.
Mol Imaging Biol ; 24(3): 425-433, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34694528

RESUMO

PURPOSE: Despite unprecedented responses to immune checkpoint inhibitors and targeted therapy in melanoma, a major subset of patients progresses and have few effective salvage options. We have previously demonstrated robust, selective uptake of the peptidomimetic LLP2A labeled with Cu-64 ([64Cu]-LLP2A) for positron emission tomography (PET) imaging in subcutaneous and metastatic models of B16F10 murine melanoma. LLP2A binds with high affinity to very late antigen-4 (VLA-4, integrin α4ß1), a transmembrane protein overexpressed in melanoma and other cancers that facilitates tumor growth and metastasis. Yet B16F10 fails to faithfully reflect human melanoma biology, as it lacks certain oncogenic driver mutations, including BRAF mutations found in ≥ 50 % of clinical specimens. Here, we evaluated the PET tracer [64Cu]-CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A) in novel, translational BRAFV600E mutant melanoma models differing in VLA-4 expression-BPR (VLA-4-) and BPRα (VLA-4+). PROCEDURES: BPR cells were transduced with α4 (CD49d) to overexpress intact cell surface VLA-4 (BPRα). The binding affinity of [64Cu]-LLP2A to BPR and BPRα cells was determined by saturation binding assays. [64Cu]-LLP2A internalization into B16F10, BPR, and BPRα cells was quantified via a plate-based assay. Tracer biodistribution and PET/CT imaging were evaluated in mice bearing subcutaneous BPR and BPRα tumors. RESULTS: [64Cu]-LLP2A demonstrated high binding affinity to BPRα (Kd = 1.4 nM) but indeterminate binding to BPR cells. VLA-4+ BPRα and B16F10 displayed comparable time-dependent [64Cu]-LLP2A internalization, whereas BPR internalization was undetectable. PET/CT showed increased tracer uptake in BPRα tumors vs. BPR tumors in vivo, which was validated by significantly greater (p < 0.0001) BPRα tumor uptake in biodistribution analyses. CONCLUSIONS: [64Cu]-LLP2A discriminates BPRα (VLA-4+) vs. BPR (VLA-4-) melanomas in vivo, supporting translation of these BRAF-mutated melanoma models via prospective imaging and theranostic studies. These results extend the utility of LLP2A to selectively target clinically relevant and therapy-resistant tumor variants toward its use for therapeutic patient care.


Assuntos
Integrina alfa4beta1 , Melanoma , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre , Modelos Animais de Doenças , Humanos , Integrina alfa4beta1/metabolismo , Melanoma/diagnóstico por imagem , Melanoma/genética , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Distribuição Tecidual
3.
J Nucl Med ; 62(2): 280-286, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32680928

RESUMO

Inflammation plays a central role in the pathogenesis of acute lung injury (ALI) during both the acute pneumonitis stage and progression into the chronic fibroproliferative phase, leading to pulmonary fibrosis. Currently, there is an unmet clinical and research need for noninvasive ways to monitor lung inflammation through targeting of immunoregulatory pathways contributing to ALI pathogenesis. In this study, we evaluated the role of targeted imaging of very late antigen-4 (VLA-4), as a key integrin mediating the adhesion and recruitment of immune cells to inflamed tissues, in quantifying lung inflammation in a mouse model of lipopolysaccharide-induced ALI. Methods: ALI was induced by a single intratracheal administration of lipopolysaccharide (10, 20, or 40 µg per mouse) in C57BL/6J mice. Control mice were intratracheally instilled with sterile phosphate-buffered saline. VLA-4-targeted PET/CT was performed 24 h after intravenous injection of a 64Cu-labeled high-affinity peptidomimetic ligand referred to as 64Cu-LLP2A, which is conjugated with the chelator (1,4,8,11-tetraazacyclotetradecane-1-(methane phosphonic acid)-8-(methane carboxylic acid) and a polyethylene glycol 4 linker, at day 2 after the induction of ALI. Ex vivo biodistribution of 64Cu-LLP2A was determined by γ-counting of harvested organs. The severity of lung inflammation was assessed histologically and by measuring the expression of inflammatory markers in the lung tissue lysates using reverse transcription quantitative polymerase chain reaction. Results: Intratracheal lipopolysaccharide instillation led to an acute inflammatory response in the lungs, characterized by increased expression of multiple inflammatory markers and infiltration of myeloid cells, along with a significant and specific increase in 64Cu-LLP2A uptake, predominantly in a peribronchial distribution. There was a strong correlation between the lipopolysaccharide dose and 64Cu-LLP2A uptake, as quantified by in vivo PET (R = 0.69, P < 0.01). Expression levels of both subunits of VLA-4, that is, integrins α4 and ß1, significantly correlated with the expression of multiple inflammatory markers, including tumor necrosis factor-α, interleukin-1ß, and nitric oxide synthase-2, highlighting the potential of VLA-4 as a surrogate marker of acute lung inflammation. Notably, in vivo 64Cu-LLP2A uptake significantly correlated with the expression of multiple inflammatory markers and VLA-4. Conclusion: Our study demonstrates the feasibility of molecular imaging of VLA-4, as a mechanistically relevant target in ALI, and the accuracy of VLA-4-targeted PET in quantification of ongoing lung inflammation in a murine model.


Assuntos
Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Integrina alfa4beta1/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Transporte Biológico , Camundongos , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 10(1): 896, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964959

RESUMO

Standard dead-end sample filtration is used to improve sample purity, but is limited as particle build-up fouls the filter, leading to reduced recovery. The fouling layer can be periodically cleared with backflush algorithms applied through a customized fluidic actuator using variable duty cycles, significantly improving particulate recovery percentage. We show a Pulse Width Modulation (PWM) process can periodically backflush the filter membrane to repeatedly interrupt cake formation and reintegrate the fouling layer into the sample, improving net permeate flux per unit volume of sample by partially restoring filter flux capacity. PWM flow for 2.19 um (targeted) and 7.32 um (untargeted) polystyrene microbeads produced 18-fold higher permeate concentration, higher recovery up to 68.5%, and an 8-fold enrichment increase, compared to a uniform flow. As the duty cycle approaches 50%, the recovery percentage monotonically increases after a critical threshold. Further, we developed and validated a mathematical model to determine that fast, small-volume backflush pulses near 50% duty cycle yield higher recovery by decreasing fouling associated with the cake layer. Optimized PWM flow was then used to purify custom particles for immune activation, achieving 3-fold higher recovery percentage and providing a new route to improve purification yields for diagnostic and cellular applications.

5.
Biomater Sci ; 5(3): 463-474, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28067347

RESUMO

The complement system is an integral component of the humoral immune system, and describes a cascade of interacting proteins responsible for the opsonization and lysis of foreign pathogens, in addition to the recruitment of immune cells. However, complement activation is also implicated in the progression and complication of immune dysfunctions such as sepsis. Microparticle (MP) biomaterials capable of tuning the local magnitude of serum complement activation could improve complement-mediated cytotoxicity to serum-resistant bacteria or calm an overactive immune response during sepsis. We demonstrate that model Fc-functionalized microparticles can be designed to either enhance or diminish the local cytotoxic effect of complement activation in human serum. The particles were formed with either the antibody Fc domains oriented outward from the particle surface or randomly adsorbed in a non-oriented fashion. In the oriented Fc form, complement products were directly sequestered to the particle surface, including C5a, a potent anaphylatoxin that, when elevated, is associated with poor sepsis prognosis. The oriented particle also lowered the cytotoxicity of serum and thus decreased the antibiotic effect when compared to serum alone. Conversely, the non-oriented microparticles were found to sequester similar levels of C5a, but much lower levels of iC3b and TCC on the microparticle surface, thereby increasing the amount of the soluble terminal complement complex. In addition, the non-oriented microparticles extend the distance over which TCC forms and enhance serum cytotoxicity to bacteria. Together, these two types of complement-modulating particles provide the first biomaterial that can functionally modify the range of complement activation at sites distant from the particle surface. Thus, biomaterials that exploit Fc presentation provide new possibilities to functionally modulate complement activation to achieve a desired clinical result.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ativação do Complemento/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Complemento C5a/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Tamanho da Partícula , Poliestirenos/química
6.
Analyst ; 138(17): 4941-9, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23799231

RESUMO

The ability to monitor biomolecular recognition such as DNA hybridization and enzymatic reactivity in solutions with high sensitivity is important for developing effective bioassay strategies. Surface enhanced Raman scattering (SERS) based on use of solid substrates to produce the SERS effect for the detection often requires substrate preparation which is ineffective for rapid monitoring. This report describes a new strategy exploiting a gold nanoparticle (AuNP) based interparticle "hot-spot" for SERS monitoring of DNA mediated assembly and enzyme induced cleavage of the assembly in solution phase. The DNAs consist of two different complementary DNA strands with a thiol modification for attachment to AuNPs of selected sizes. In a solution containing AuNPs conjugated with one of the single-stranded (ss) DNA and other AuNPs labeled with a Raman reporter molecule, 4-mercaptobenzoic acid (MBA), the introduction of the complementary DNA strand leads to a linkage of the two types of AuNPs, producing double-stranded (ds) DNA-AuNP assembly (ds-DNA-AuNPs) with an interparticle "hot-spot" for SERS detection of the diagnostic bands of the reporter. Upon introducing a restriction enzyme (e.g. MspI) into the ds-DNA-AuNP assembly solution, the removal of the interparticle "hot-spot" due to restriction enzyme cleavage of the ds-DNA leads to a decrease of the SERS signals. While the detailed cleavage process may depend on the reaction time and the amount of enzyme, the viability of using gold nanoparticle "hot-spot" based SERS monitoring of DNA assembly and enzyme cleavage is clearly demonstrated, which has important implications for developing new strategies for bioassays.


Assuntos
Clivagem do DNA , DNA/química , DNA/metabolismo , Desoxirribonuclease HpaII/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman , Sequência de Bases , Benzoatos/química , DNA/genética , Hibridização de Ácido Nucleico , Soluções , Compostos de Sulfidrila/química , Propriedades de Superfície
7.
Anal Chem ; 84(1): 26-9, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22148593

RESUMO

While the importance of microRNAs (miRNAs) in cancer treatment or manipulation of genetic expression has been increasingly recognized for developing miRNA-based therapies, the controlled delivery of miRNAs into specific cells constitutes a challenging task. This report describes preliminary findings from an investigation of the conjugation of gold nanoparticles with miRNAs (miRNA-AuNPs) and their cell transfection. The immobilization of miRNAs on the AuNPs was detected, and the surface stability was substantiated by gel electrophoresis assessment of the highly charged characteristics of miRNA-AuNPs and their surface-exchange inactivity with a highly charged surfactant. The miRNA-AuNPs were tested in cell transfection using multiple myeloma cells, demonstrating efficient knockdown in the functional luciferase assay. The findings have important implications for understanding the mechanistic details of cell transfection involving miRNA-conjugated nanoparticles as biosensing or targeting probes.


Assuntos
Ouro/química , Nanopartículas Metálicas , MicroRNAs/química , Transfecção , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...