Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Membranes (Basel) ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984738

RESUMO

Separating oil from water allows us to reuse both fluids for various applications, leading to a more economical process. Membrane separation has been evidenced as a cost-effective process for wastewater treatment. A hollow fiber membrane made of polyacrylonitrile (PAN) is an excellent choice for separating oil from water because of its superior chemical resistance. Its low antifouling ability, however, reduces the effectiveness of its separation. Hence, in this study, we used tannic acid (TA) and FeIII complex to modify the surface of the PAN hollow fiber membrane. To improve membrane performance, different reaction times were investigated. The results demonstrate that even when the TA-FeIII covered the pores of the PAN membrane, the water flux remained constant. However, when an emulsion was fed to the feed solution, the flux increased from 50 to 66 LMH, indicating low oil adhesion on the surface of the modified membrane. When compared to the pristine membrane, the modified membrane had superior antifouling and reusability. As a result, the hydrophilic TA-FeIII complex on PAN surface improves overall membrane performance.

2.
Membranes (Basel) ; 12(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35736314

RESUMO

In this work, silica nanoparticles were produced in situ, to be embedded eventually in the polyamide layer formed during interfacial polymerization for fabricating thin-film nanocomposite membranes with enhanced performance for dehydrating isopropanol solution. The nanoparticles were synthesized through a sol-gel reaction between 3-aminopropyltrimethoxysilane (APTMOS) and 1,3-cyclohexanediamine (CHDA). Two monomers-CHDA (with APTMOS) and trimesoyl chloride-were reacted on a hydrolyzed polyacrylonitrile (hPAN) support. To obtain optimum fabricating conditions, the ratio of APTMOS to CHDA and reaction time were varied. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to illustrate the change in morphology as a result of embedding silica nanoparticles. The optimal conditions for preparing the nanocomposite membrane turned out to be 0.15 (g/g) APTMOS/CHDA and 60 min mixing of APTMOS and CHDA, leading to the following membrane performance: flux = 1071 ± 79 g∙m-2∙h-1, water concentration in permeate = 97.34 ± 0.61%, and separation factor = 85.39. A stable performance was shown by the membrane under different operating conditions, where the water concentration in permeate was more than 90 wt%. Therefore, the embedment of silica nanoparticles generated in situ enhanced the separation efficiency of the membrane.

3.
Membranes (Basel) ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629835

RESUMO

In this work, thin-film composite polyamide membranes were fabricated using triethylenetetramine (TETA) and trimesoyl chloride (TMC) following the vacuum-assisted interfacial polymerization (VAIP) method for the pervaporation (PV) dehydration of aqueous isopropanol (IPA) solution. The physical and chemical properties as well as separation performance of the TFCVAIP membranes were compared with the membrane prepared using the traditional interfacial polymerization (TIP) technique (TFCTIP). Characterization results showed that the TFCVAIP membrane had a higher crosslinking degree, higher surface roughness, and denser structure than the TFCTIP membrane. As a result, the TFCVAIP membrane exhibited a higher separation performance in 70 wt.% aqueous IPA solution at 25 °C with permeation flux of 1504 ± 169 g∙m-2∙h-1, water concentration in permeate of 99.26 ± 0.53 wt%, and separation factor of 314 (five times higher than TFCTIP). Moreover, the optimization of IP parameters, such as variation of TETA and TMC concentrations as well as polymerization time for the TFCVAIP membrane, was carried out. The optimum condition in fabricating the TFCVAIP membrane was 0.05 wt.% TETA, 0.1 wt% TMC, and 60 s polymerization time.

4.
Membranes (Basel) ; 12(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323809

RESUMO

Wastewater effluents containing high concentrations of dyes are highly toxic to the environment and aquatic organisms. Recycle and reuse of both water and dye in textile industries can save energy and costs. Thus, new materials are being explored to fabricate highly efficient nanofiltration membranes for fulfilling industrial needs. In this work, three diamines, 1,4-cyclohexanediamine (CHD), ethylenediamine (EDA), and p-phenylenediamine (PPD), are reacted with TMC separately to fabricate a thin film composite polyamide membrane for dye desalination. Their chemical structures are different, with the difference located in the middle of two terminal amines. The surface morphology, roughness, and thickness of the polyamide layer are dependent on the reactivity of the diamines with TMC. EDA has a short linear alkane chain, which can easily react with TMC, forming a very dense selective layer. CHD has a cyclohexane ring, making it more sterically hindered than EDA. As such, CHD's reaction with TMC is slower than EDA's, leading to a thinner polyamide layer. PPD has a benzene ring, which should make it the most sterically hindered structure; however, its benzene ring has a pi-pi interaction with TMC that can facilitate a faster reaction between PPD and TMC, leading to a thicker polyamide layer. Among the TFC membranes, TFCCHD exhibited the highest separation efficiency (pure water flux = 192.13 ± 7.11 L∙m-2∙h-1, dye rejection = 99.92 ± 0.10%, and NaCl rejection = 15.46 ± 1.68% at 6 bar and 1000 ppm salt or 50 ppm of dye solution). After exposure at 12,000 ppm∙h of active chlorine, the flux of TFCCHD was enhanced with maintained high dye rejection. Therefore, the TFCCHD membrane has a potential application for dye desalination process.

5.
Polymers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916885

RESUMO

A thin-film composite (TFC) polyurea membrane was fabricated for the dehydration of an aqueous tetrahydrofuran (THF) solution through interfacial polymerization, wherein polyethyleneimine (a water-soluble amine monomer) and m-xylene diisocyanate (an oil-soluble diisocyanate monomer) were reacted on the surface of a modified polyacrylonitrile (mPAN) substrate. Cosolvents were used to tailor the membrane properties and increase the membrane permeation flux. Four types of alcohols that differed in the number of carbon (methanol, ethanol, isopropanol, and tert-butanol) were added as cosolvents, serving as swelling agents, to the aqueous-phase monomer solution, and their effect on the membrane properties and pervaporation separation was discussed. Attenuated total reflection Fourier transform infrared spectroscopy confirmed the formation of a polyurea layer on mPAN. Field emission scanning electron microscopy and surface water contact angle analysis indicated no change in the membrane morphology and hydrophilicity, respectively, despite the addition of cosolvents for interfacial polymerization. The TFC membrane produced when ethanol was the cosolvent exhibited the highest separation performance (permeation flux = 1006 ± 103 g·m-2·h-1; water concentration in permeate = 98.8 ± 0.3 wt.%) for an aqueous feed solution containing 90 wt.% THF at 25 °C. During the membrane formation, ethanol caused the polyurea layer to loosen and to acquire a certain degree of cross-linking. The optimal fabrication conditions were as follows: 10 wt.% ethanol as cosolvent; membrane curing temperature = 50 °C; membrane curing time = 30 min.

6.
Membranes (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808528

RESUMO

The advancement in membrane science and technology, particularly in nanofiltration applications, involves the blending of functional nanocomposites into the membranes to improve the membrane property. In this study, Ag-polydopamine (Ag-PDA) particles were synthesized through in situ PDA-mediated reduction of AgNO3 to silver. Infusing Ag-PDA particles into polyethersulfone (PES) matrix affects the membrane property and performance. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of Ag-PDA particles on the membrane surface. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) describe the morphology of the membranes. At an optimum concentration of Ag-PDA particles (0.3 wt % based on the concentration of PES), the modified membrane exhibited high water flux 13.33 L∙m-2∙h-1 at 4 bar with high rejection for various dyes of >99%. The PESAg-PDA0.3 membrane had a pure water flux more than 5.4 times higher than that of a pristine membrane. Furthermore, in bacterial attachment using Escherichia coli, the modified membrane displayed less bacterial attachment compared with the pristine membrane. Therefore, immobilizing Ag-PDA particles into the PES matrix enhanced the membrane performance and antibacterial property.

7.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672026

RESUMO

Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.

8.
Polymers (Basel) ; 13(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673191

RESUMO

Thin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes. The diamines differed in chemical structure; the functional group present between the terminal amines was classified as follows: aliphatic group of 1,3-diaminopropane (DAPE); cyclohexane in 1,3-cyclohexanediamine (CHDA); and aromatic or benzene ring in m-phenylenediamine (MPD). For FO tests, deionized water and 1 M aqueous sodium sulfate solution were used as feed and draw solution, respectively. Interfacial polymerization conditions were also varied: concentrations of water and oil phases, time of contact between the water-phase solution and the membrane substrate, and polymerization reaction time. The resultant membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and surface contact angle measurement to identify the chemical structure, morphology, roughness, and hydrophilicity of the polyamide layer, respectively. The results of FO experiments revealed that among the three diamine monomers, CHDA turned out to be the most effective, as it led to the production of TFC NF-like FO membrane with optimal performance. Then, the following optimum conditions were established for the CHDA-based membrane: contact between 2.5 wt.% aqueous CHDA solution and polysulfone (PSf) substrate for 2 min, and polymerization reaction between 1 wt.% TMC solution and 2.5 wt.% CHDA solution for 30 s. The composite CHDA-TMC/PSf membrane delivered a water flux (Jw) of 18.24 ± 1.33 LMH and a reverse salt flux (Js) of 5.75 ± 1.12 gMH; therefore, Js/Jw was evaluated to be 0.32 ± 0.07 (g/L).

9.
Membranes (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499087

RESUMO

In this study, cellulose acetate (CA) mixed-matrix membranes were fabricated through the wet-phase inversion method. Two types of montmorillonite (MMT) nanoclay were embedded separately: sodium montmorillonite (Na-MMT) and organo-montmorillonite (O-MMT). Na-MMT was converted to O-MMT through ion exchange reaction using cationic surfactant (dialkyldimethyl ammonium chloride, DDAC). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) compared the chemical structure and composition of the membranes. Embedding either Na-MMT and O-MMT did not change the crystallinity of the CA membrane, indicating that the nanoclays were dispersed in the CA matrix. Furthermore, nanoclays improved the membrane hydrophilicity. Compared with CANa-MMT membrane, CAO-MMT membrane had a higher separation efficiency and antifouling property. At the optimum concentration of O-MMT in the CA matrix, the pure water flux reaches up to 524.63 ± 48.96 L∙m-2∙h-1∙bar-1 with over 95% rejection for different oil-in-water emulsion (diesel, hexane, dodecane, and food-oil). Furthermore, the modified membrane delivered an excellent antifouling property.

10.
Membranes (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297452

RESUMO

Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.

11.
Polymers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053660

RESUMO

The type of organic solvents used in interfacial polymerization affects the surface property, free volume, and separation performance of the thin-film composite (TFC) polyamide membrane. In this study, TFC polyamide membrane was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC). Four types of organic solvent were explored in the preparation of pervaporation membrane. These are tetralin, toluene, hexane, and isopentane. The solubility parameter distance between organic solvents and DETA follows in increasing order: tetralin (17.07 MPa1/2) < toluene (17.31 MPa1/2) < hexane (19.86 MPa1/2) < isopentane (20.43 MPa1/2). Same trend was also observed between the organic solvents and DETA. The larger the solubility parameter distance, the denser and thicker the polyamide. Consequently, field emission scanning electron microscope (FESEM) and positron annihilation spectroscopy (PAS) analysis revealed that TFCisopentane had the thickest polyamide layer. It also delivered the highest pervaporation efficiency (permeation flux = 860 ± 71 g m-2 h-1; water concentration in permeate = 99.2 ± 0.8 wt%; pervaporation separation index = 959,760) at dehydration of 90 wt% aqueous ethanol solution. Furthermore, TFCisopentane also exhibited a high separation efficiency in isopropanol and tert-butanol. Therefore, a suitable organic solvent in preparation of TFC membrane through interfacial polymerization enables high pervaporation efficiency.

12.
Polymers (Basel) ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105765

RESUMO

In the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome® Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m-2∙h-1∙bar-1. Its antifouling and oleophobicity surface properties were verified using fluorescent- bovine serum albumin (BSA) and underwater mineral oil contact angle, respectively. According to the fluorescent microscopic images, the modified membrane had ten times lower adhesion of protein on the surface than the unmodified membrane. The underwater oil contact angle was raised from 110° to 155°. Moreover, the salt rejection followed this sequence: Na2SO4 > MgSO4 > NaCl > MgCl2, which agreed with the typical negatively charged NF membrane. In addition, the physicochemical characterization of membranes was further investigated to understand and link to the membrane performance, such as surface functional group, surface elements analysis, surface roughness/morphology, and surface hydrophilicity.

13.
Polymers (Basel) ; 12(6)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517332

RESUMO

Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF-PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF-PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF-PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.

14.
Membranes (Basel) ; 10(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357447

RESUMO

In this study, the basal spacing of montmorillonite (MMT) was modified through ion exchange. Two kinds of MMT were used: sodium-modified MMT (Na-MMT) and organo-modified MMT (O-MMT). These two particles were incorporated separately into the thin-film nanocomposite polyamide membrane through the interfacial polymerization of piperazine and trimesoyl chloride in n-hexane. The membrane with O-MMT (TFNO-MMT) has a more hydrophilic surface compared to that of membrane with Na-MMT (TFNNa-MMT). When various types of MMT were dispersed in the n-hexane solution with trimesoyl chloride (TMC), O-MMT was well-dispersed than Na-MMT. The poor dispersion of Na-MMT in n-hexane led to the aggregation of Na-MMT on the surface of TFNNa-MMT. TFNO-MMT displayed a uniform distribution of O-MMT on the surface, because O-MMT was well-dispersed in n-hexane. In comparison with the pristine and TFNNa-MMT membranes, TFNO-MMT delivered the highest pure water flux of 53.15 ± 3.30 L∙m-2∙h-1 at 6 bar, while its salt rejection for divalent ions remained at 95%-99%. Furthermore, it had stable performance in wide operating condition, and it exhibited a magnificent antifouling property. Therefore, a suitable type of MMT could lead to high separation efficiency.

15.
J Electromyogr Kinesiol ; 51: 102403, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105912

RESUMO

Electromyographic (EMG) raw signals are sensitive to intrinsic and extrinsic factors. Consequently, EMG normalization is required to draw proper interpretations of standardized data. Specific recommendations are needed regarding a relevant EMG normalization method for participants who show atypical EMG patterns, such as post-stroke subjects. This study compared three EMG normalization methods ("isometric MVC", "isokinetic MVC", "isokinetic MVC kinematic-related") on muscle activations and the antagonist-agonist co-contraction index. Fifteen post-stroke subjects and fifteen healthy controls performed active elbow extensions, followed by isometric and isokinetic maximum voluntary contractions (MVC). Muscle activations were obtained by normalizing EMG envelopes during active movement using a reference value determined for each EMG normalization method. The results showed no significant difference between the three EMG normalization methods in post-stroke subjects on muscle activation and the antagonist-agonist co-contraction index. We highlighted that the antagonist-agonist co-contraction index could underestimate the antagonist co-contraction in the presence of atypical EMG patterns. Based on its practicality and feasibility, we recommend the use of isometric MVC as a relevant procedure for EMG normalization in post-stroke subjects. We suggest combined analysis of the antagonist-agonist co-contraction index and agonist and antagonist activations to properly investigate antagonist co-contraction in the presence of atypical EMG patterns during movement.


Assuntos
Cotovelo/fisiologia , Eletromiografia/normas , Contração Isométrica , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Fenômenos Biomecânicos , Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Masculino , Movimento , Músculo Esquelético/fisiologia , Padrões de Referência
16.
Polymers (Basel) ; 12(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012761

RESUMO

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and 'ion pair' characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. Coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.

17.
Salud pública Méx ; 59(6): 657-664, nov.-dic. 2017. tab
Artigo em Espanhol | LILACS | ID: biblio-903833

RESUMO

Resumen: Objetivo: Evaluar los niveles séricos de 25-hidroxivitamina D (25-OH-D) en niños sanos menores de 10 años del área metropolitana de Barranquilla (AMB). Material y métodos: Estudio descriptivo de corte transversal, que evaluó los niveles séricos de 25-OH-D en 360 niños del AMB en los años 2014-2015. Resultados: El valor promedio de 25-OH-D en la población estudiada fue 32.23±8.56 ng/mL; 46.38% de los niños tenía niveles de vitamina D considerados insuficientes (<30 ng/mL) y 3.05% mostro deficiencia (<20 ng/mL). Soledad y Puerto Colombia fueron los municipios con mayor población en esta condición. Conclusiones: Es necesario generar programas de suplementación nutricional y fomentar estilos de vida que permitan, de forma segura, mejorar los niveles de vitamina D en la población.


Abstract: Objetive: To evaluate the serum 25-hydroxyvitamin D (25-OH-D) levels in healthy children under 10 years of the Barranquilla metropolitan area. Materials and methods: A descriptive cross-sectional study in which serum levels of 25-OH-D were analyzed in 360 healthy children from 2014 to 2015. Results: The median value of 25-OH-D serum level was 32.23±8.56 ng/mL; 46.38% of children had vitamin D levels in the insufficient range (<30 ng/mL), while 3.05% were deficient (<20 ng/mL). Soledad and Puerto Colombia were the municipalities with more population in this condition. Conclusions: It is necessary to promote vitamin D supplement consumption and healthy lifestyles in order to safely improve levels of this micronutrient in the population.


Assuntos
Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Vitamina D/análogos & derivados , Deficiência de Vitamina D/epidemiologia , Micronutrientes/deficiência , População Urbana , Vitamina D/sangue , Inquéritos Nutricionais , Estudos Transversais , Colômbia/epidemiologia
18.
Vet Rec Open ; 4(1): e000193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890790

RESUMO

Numerous studies conducted to assess welfare of domestic dogs housed in kennel facilities have reported that these dogs experience suboptimal living conditions. One important goal of improving welfare of kennelled dogs is to reduce their stress levels, and one recommended approach for improving welfare of kennelled dogs is group or social housing. The beneficial effects of management changes designed to achieve this goal should be measurable in individual animals. Stress is evident through behaviours exhibited, as well as via the concentration of cortisol, a key hormone reflecting stress. Using behavioural and hair cortisol measures, we conducted a pilot study to measure the impact of switching dogs housed in a long-term kennels facility from solitary to pair housing, using both within-subjects and between-groups comparisons. Considerable individual variation in dog responses was noted, with only two of eight pair-housed dogs showing significant declines in multiple stress-related behaviours once in pair housing. The most sensitive behaviours were active vigilance and repetitive movements (such as jumping and pacing). Barking was reduced overall in the facility following the housing change, even among dogs still in solitary housing. The long-term stress as reflected in hormone deposition in hair also provided encouraging indications that the dogs experienced lower stress levels when in paired housing; dogs showed a significant decline in hair cortisol levels from the first (prehousing change) to second (postintervention) samples. Domestic dogs are social animals, and numerous indications of potential benefit were recorded with no negative impacts seen. Based on our findings, we recommend pair or group housing of compatible dogs as a promising addition to the strategies available to those seeking to improve welfare of kennelled dogs. Future studies using higher numbers of animals and that include tracking of hair cortisol, vigilance behaviour, repetitive movements and barking would be desirable.

19.
Simul Healthc ; 12(2): 91-95, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28383365

RESUMO

INTRODUCTION: A teaching model was sought to improve canine otoscopy skill and reduce use of teaching dogs. METHODS: An otoscopy teaching model was printed in a flexible medium on a desktop three-dimensional printer from a magnetic resonance image of a canine external ear canal. The model was mounted in a polyvinyl dog mannequin. Validation of the teaching model was sought from student, faculty, and dog perspective. Student perception of prelaboratory training was assessed using a survey regarding their experience. Otoscopy skill was assessed by faculty grading the ear anatomy visualized as well as the time required to prepare for and perform otoscopy and the time to the dog's first sign of aversion. The time data were used to assess whether there was a reduction in use of teaching dogs. Data from students exposed to the otoscopy model as part of their prelaboratory training (n = 20) were compared with those that were not exposed to the model (n = 19). RESULTS: The students found prelaboratory training with the model significantly more helpful than prelaboratory training without the model in all aspects of otoscopy (P < 0.05). Use of the model did not alter otoscopy skill (structures seen or time taken) or decrease dog use. CONCLUSIONS: The students found the model helpful, but the best that can be said is the model did not negatively impact their otoscopy skill acquisition. Although the outcome of the study did not indicate a reduction in teaching dog use, the model has replaced live dog otoscopy in the institute's teaching program for initial canine otoscopy exposure.


Assuntos
Educação em Veterinária/métodos , Modelos Anatômicos , Otoscopia/métodos , Animais , Competência Clínica , Cães , Avaliação Educacional , Impressão Tridimensional , Reprodutibilidade dos Testes
20.
Polymers (Basel) ; 9(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30965808

RESUMO

Membrane support properties influence the performance of thin-film composite nanofiltration membranes. We fabricated several polysulfone (PSf) supports. The physicochemical properties of PSf were altered by adding polyethylene glycol (PEG) of varying molecular weights (200⁻35,000 g/mol). This alteration facilitated the formation of a thin polyamide layer on the PSf surface during the interfacial polymerization reaction involving an aqueous solution of piperazine containing 4-aminobenzoic acid and an organic solution of trimesoyl chloride. Attenuated total reflectance-Fourier transform infrared validated the presence of PEG in the membrane support. Scanning electron microscopy and atomic force microscopy illustrated that the thin-film polyamide layer morphology transformed from a rough to a smooth surface. A cross-flow filtration test indicated that a thin-film composite polyamide membrane comprising a PSf support (TFC-PEG20k) with a low surface porosity, small pore size, and suitable hydrophilicity delivered the highest water flux and separation efficiency (J = 81.1 ± 6.4 L·m-2·h-1, RNa2SO4 = 91.1% ± 1.8%, and RNaCl = 35.7% ± 3.1% at 0.60 MPa). This membrane had a molecular weight cutoff of 292 g/mol and also a high rejection for negatively charged dyes. Therefore, a PSf support exhibiting suitable physicochemical properties endowed a thin-film composite polyamide membrane with high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA