Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(49)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34507312

RESUMO

Time resolved pump and probe acoustics and first-principles calculations were employed to assess elastic properties of the TbMnO3perovskite manganite having orthorhombic symmetry. Measuring sound velocities of bulk longitudinal and shear acoustic waves propagating along at least two different directions in the high symmetry planes (100), (010) and (001), provided a powerful mean to selectively determine the six diagonal elastic constantsC11= 227 GPa,C22= 349 GPa,C33= 274 GPa,C44= 71 GPa,C55= 57 GPa,C66= 62 GPa. Among the three remaining off-diagonal ones,C23= 103 GPa was determined with a bissectrice direction. Density functional theory calculations with colinear spin-polarized provided complementary insights on their optical, elastic and magnetoelastic properties.

2.
Sci Rep ; 8(1): 16986, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451903

RESUMO

Polymers with nanoparticle inclusions are attractive materials because physical properties can be tuned by varying size and volume fraction range. However, elastic behavior can degrade at higher inclusion fractions when particle-particle contacts become important, and sophisticated measurement techniques are required to study this crossover. Here, we report on the mechanical properties of materials with BaTiO3 nanoparticles (diameters < 10 nm) in a polymer (poly(methyl methacrylate)) matrix, deposited as films in different thickness ranges. Two well-known techniques, time and frequency domain Brillouin light scattering, were employed to probe the composition dependence of their elastic modulus. The time domain experiment revealed the biphasic state of the system at the highest particle volume fraction, whereas frequency domain Brillouin scattering provided comprehensive information on ancillary variables such as refractive index and directionality. Both techniques prove complementary, and can in particular be used to probe the susceptibility of elastic properties in polymer nanocomposites to aging.

3.
Ultrasonics ; 56: 129-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24852260

RESUMO

Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.

4.
Rev Sci Instrum ; 80(7): 073902, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19655960

RESUMO

Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

5.
Phys Rev Lett ; 100(3): 035502, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18232997

RESUMO

We report an innovative high pressure method combining the diamond anvil cell device with the technique of picosecond ultrasonics. Such an approach allows us to measure sound velocity and attenuation of solids and liquids under pressure of tens of GPa, overcoming all the drawbacks of traditional techniques. The power of this experimental technique is demonstrated in studies of lattice dynamics and relaxation processes in a metallic single grain of AlPdMn quasicrystal, and in rare gas solids neon and argon.

6.
Ultrasonics ; 44 Suppl 1: e1277-81, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16814828

RESUMO

In picosecond ultrasonics experiments the absorption of a femtosecond laser pulse in a thin metallic transducer is used to generate very short acoustic pulses. These pulses are made of coherent longitudinal waves with a frequency spectrum that can reach 100-200 GHz. The laser pulse absorption gives rise to a heating of the film of a few Kelvin within a typical time of 1 ps. Later on, the heat goes in the substrate through an interface thermal resistance and is diffused by thermal conduction. At very low temperature and in pure crystals the thermal phonons emitted by the heated metallic film can propagate ballistically over large distances and produce a so-called heat pulse. We report on the experimental evidence of the coexistence of the coherent acoustic pulse and the incoherent heat pulse generated and detected by laser ultrasonics.

7.
Ultrasonics ; 44 Suppl 1: e1289-94, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16806353

RESUMO

We report on picosecond ultrasonic measurements obtained on aluminum and platinum nanostructures with variable dot size and lateral periodicity which realized a 2D phononic crystal. Performing investigations at different resolution scales, we have identified individual modes of vibration depending on the dot size, and mode of vibration strongly correlated with the bi-dimensional organization. The platinum dots sputtered on an aluminum layer have shown a behavior of isolated oscillators without any coupling between neighbor elements in this phononic crystal. The frequency of such normal modes, extracted from time resolved measurements are in good agreement with 3D finite element simulations. In contrast, with aluminum dot systems where the coupling is more efficient we observe a complex spectrum of vibrational modes related to the band structure induced by the bi-dimensional patterning.


Assuntos
Algoritmos , Lasers , Teste de Materiais/métodos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ultrassom , Simulação por Computador , Elasticidade , Doses de Radiação , Radiometria/métodos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...