Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 39(6): 1267-1272, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239770

RESUMO

There is no use restriction associated with bees for many fungicides used in agriculture; however, this does not always mean that these pesticides are harmless for these nontarget organisms. We investigated whether the fungicide pyraclostrobin, which acts on fungal mitochondria, also negatively affects honey bee mitochondrial bioenergetics. Honey bees were collected from 5 hives and anesthetized at 4 °C. The thoraces were separated, and mitochondria were isolated by grinding, filtering, and differential centrifugation. An aliquot of 0.5 mg of mitochondrial proteins was added to 0.5 mL of a standard reaction medium with 4 mM succinate (complex II substrate) plus 50 nM rotenone (complex I inhibitor), and mitochondrial respiration was measured at 30 °C using a Clark-type oxygen electrode. Mitochondrial membrane potential was determined spectrofluorimetrically using safranin O as a probe, and adenosine triphosphate (ATP) synthesis was determined by chemiluminescence. Pyraclostrobin at 0 to 50 µM was tested on the mitochondrial preparations, with 3 repetitions. Pyraclostrobin inhibited mitochondrial respiration in a dose-dependent manner at concentrations of 10 µM and above, demonstrating typical inhibition of oxidative phosphorylation. Pyraclostrobin also promoted a decline in the mitochondrial membrane potential at doses of 5 µM and above and in ATP synthesis at 15 µM and above. We conclude that pyraclostrobin interferes with honey bee mitochondrial function, which is especially critical for the energy-demanding flight activity of foraging bees. Environ Toxicol Chem 2020;39:1267-1272. © 2020 SETAC.


Assuntos
Abelhas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estrobilurinas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Fungos/metabolismo , Fungicidas Industriais/metabolismo , Inativação Metabólica/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estrobilurinas/metabolismo
2.
J Econ Entomol ; 111(3): 1369-1375, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29534200

RESUMO

Silkworm cocoon production has been reduced due to a number of problems other than those inherent in sericulture, such as diseases, malnutrition, and inappropriate management. The use of pesticides in areas surrounding mulberry fields can contaminate these plants and consequently harm caterpillars. The aim of this study was to evaluate whether the application of the fungicide pyraclostrobin in mulberry plants interferes with the mitochondrial bioenergetics and the productive performance of silkworms. Mulberry plants were treated with pyraclostrobin (0, 100, 200, and 300 g ha-1). After 30 d of fungicide application, fifth instar caterpillars were fed with leaves from the treated plants. We evaluated in vitro and in vivo mitochondrial bioenergetics of mitochondria from the head and intestines, as well as the feed intake and mortality rate of the caterpillars and the weight of fresh cocoons and cocoons shells. At doses of 50 µM (in vitro) and 200 g ha-1 (in vivo), pyraclostrobin inhibited oxygen consumption in state 3, dissipated membrane potential, and inhibited ATP synthesis in mitochondria. Pyraclostrobin acted as a respiratory chain inhibitor, affecting mitochondrial bioenergetics. The fungicide did not interfere with food consumption but negatively affected mortality rate and weight of cocoons. Mulberry leaves contaminated with pyraclostrobin negatively impact the mitochondrial bioenergetics of silkworms and cocoon production.


Assuntos
Bombyx/crescimento & desenvolvimento , Fungicidas Industriais/efeitos adversos , Mitocôndrias/metabolismo , Estrobilurinas/efeitos adversos , Animais , Bombyx/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Morus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...