Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 52(2): 753-60, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23273254

RESUMO

The crystal and magnetic structures of the organic-inorganic hybrid compound Cr(II) ammoniumethylphosphonate chloride monohydrate, Cr[D(3)N-(CH(2))(2)-PO(3))(Cl)(D(2)O)] (1), have been studied by temperature-dependent neutron powder diffraction and superconducting quantum interference device (SQUID) magnetometry. The compound represents a rare example of a magnetoelectric polar organic-inorganic hybrid solid, containing high spin Cr(2+) ions (S = 2) and is a canted antiferromagnet (weak ferromagnet) below T(N) = 5.5 K. The neutron powder diffraction pattern recorded at T = 10 K, shows that the partially deuterated compound crystallizes in the same non centrosymmetric monoclinic space group P2(1) (No. 4) with the following unit-cell parameters: a = 5.24041(4) Å, b =13.93113(8) Å, c = 5.26081(4) Å, and ß = 105.4347(5)°. Powder neutron diffraction of a partially deuterated sample has enabled us, for the first time, to locate the water molecule. At low temperature, the compound presents a canted antiferromagnetic state characterized by k = 0 resulting in the magnetic symmetry P2(1)'. This symmetry is in agreement with the previously reported large magnetodielectric effect. The crystal structure of (1) can be described as being built up of triangular lattice planes made up of [Cr(II)O(4)Cl] square pyramids which are separated by ammonium ethyl groups along the b axis. The transition from paramagnetic to weakly ferromagnetic state results from super-superexchanges only. Surprisingly, while the overall magnetic behavior is antiferromagnetic, the Cr(II)O(4)Cl planes are ferromagnetic, and the strongest antiferromagnetic coupling is via the ammonium ethyl groups. Our density functional calculations confirm these aspects of the spin exchange interactions of (1) and that the spin exchange interactions between Cr(II) ions are considerably weak compared with the single-ion anisotropy of Cr(II).

2.
Inorg Chem ; 51(13): 7332-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22702417

RESUMO

The new metal-organic compound nickel(II) 3,4;9,10-perylenediimide bis-phosphonate pentahydrate, i.e. Ni(2)[(PDI-BP)(H(2)O)(2)]·3H(2)O (1), has been synthesized and its structural and magnetic properties have been studied. Reaction of 3,4;9,10-perylenediimide bis-phosphonate (PDI-BP, hereafter) ligand and nickel chloride in water resulted in the precipitation of a red and poorly crystalline solid (1). As the solid shows a poor crystalline organization of aggregates, the energy dispersive X-ray diffraction analysis (EDXD) technique has been used to obtain short-range order structural information of the single nanoaggregates by radial distribution function analysis. The overall structure of the compound is characterized by layers containing perylene planes shifted in the direction perpendicular to the stacking axes in such a way that only the outer rings overlap. The edges of the perylene planes are connected to the phosphonate groups through an imido group. The oxygen atoms of the [-PO(3)](2-) group and those of the water molecules are bonded to the nickel ions resulting in a [NiO(6)] octahedral coordination sphere. The Ni-O bond lengths are 0.21 ± 0.08 nm and the Ni-O-Ni angles of aligned moieties are 95 ± 2°. The oxygen atoms of the water molecules and the nickel atoms are nearly planar and almost perpendicular to the perylene planes forming chains of edge-sharing octahedra. The magnetic properties of (1) show the presence of intrachain ferromagnetic Ni-Ni interactions and a long-range ferromagnetic order below 21 K with a canting angle and with a spin glasslike behavior due to disorder in the inorganic layer. Hysteresis cycles show a coercive field of ca. 272 mT at 2 K that decreases as the temperature is increased and vanishes at ca. 20 K.

3.
Inorg Chem ; 49(16): 7472-7, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20690756

RESUMO

Light-blue crystals of chromium(II) methyl phosphonate dihydrate, [Cr(CH(3)PO(3))(H(2)O)].H(2)O, were obtained in water by mixing filtered solutions of methylphosphonic acid and chromium(II) chloride in the presence of urea in an inert atmosphere. The compound was characterized by elemental analysis, TGA-DSC, X-ray crystallography, magnetic measurements, and UV-visible and FT-IR spectroscopies. The crystal and molecular structures (orthorhombic Pnma (no. 62): a = 4.4714(5) A, b = 6.8762(7) A, c = 19.180(2) A, Z = 4) have been solved using single-crystal X-ray diffraction. The chromium(II) ion is six-coordinated by oxygens (4 + 2) to form an elongated octahedron, with the four equatorial oxygen atoms belonging to [-PO(3)](2-) phosphonate groups. This stereochemistry of the Cr(II) ion (high-spin d(4) electronic configuration) is ascribed to the Jahn-Teller effect. The [CrO(6)] chromophore, the [CH(3)PO(3)](2-) anions, and the water molecules build a novel one-dimensional (1D) metal(II) oxide chain, anchored to each other within the ab plane by two oxygens of the phosphonate ligand. Within the chain, each Cr(2+) ion is connected through double oxygen bridges to its two neighbors, forming edge-sharing octahedra running along the b axis. The chains are further connected with the adjacent chains by phosphonate [-PO(3)](2-) groups of the ligand, forming an inorganic layer that alternates along the c axis of the unit cell with bilayers, consisting of methyl groups and water of crystallization. The thermal variation of the magnetic susceptibility follows the Curie-Weiss law, with a large negative Weiss constant, theta = -60 K, indicating the presence of antiferromagnetic AF exchange interactions between neighboring Cr(II) ions. The magnetic behavior and the magnetic dimensionality have been analyzed in terms of Fisher's classical limiting form of the Heisenberg chain theory, and a value of J = -9.3 cm(-1) was found. The negative value of the intra-chain exchange constant coupling J confirms the presence of an AF coupling. No sign of long-range magnetic ordering down to 2 K (the lowest measured temperature) is observed, in agreement with the predominant one-dimensional character of the exchange interactions.

4.
Inorg Chem ; 47(23): 10945-52, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18975935

RESUMO

The reaction of nickel chloride with phenyl phosphonic acid under hydrothermal conditions resulted in the isolation of yellow-green single crystals of Ni[(C(6)H(5)PO(3))(H(2)O)]. The structure of the compound has been solved by X-ray single-crystal diffraction studies. Ni[(C(6)H(5)PO(3))(H(2)O)] crystallizes in the orthorhombic space group Pmn2(1) and is isostructural with the Mn(II), Fe(II), and Co(II) analogues. It presents the typical features of the hybrid 2D structures, consisting of alternating inorganic and organic layers. The former are formed by six-coordinated nickel(II) ions bridged by oxygen atoms into the layers. The inorganic layers are capped by the phenyl phosphonate groups, with phenyl groups of two adjacent ligands forming a hydrophobic bilayer region, and van der Waals contacts are established between them. The magnetic properties investigated by means of dc and ac susceptibility measurements point to an AF exchange coupling between nearest neighboring Ni(II) ions. Below 5 K, the compound orders magnetically showing the typical features of a canted antiferromagnet. The magnetic behavior and magnetic dimensionality of Ni[(C(6)H(5)PO(3))(H(2)O)] have been fully analyzed and compared to those of the Ni(II) parent compounds Ni[(RPO(3))(H(2)O)] (where R = CH(3), C(18)H(37)), which exhibit different symmetries of the inorganic layers and lengths of the R groups.

5.
Inorg Chem ; 42(20): 6345-51, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14514310

RESUMO

Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)], a rare example of a polar organic-inorganic hybrid material containing Cr(2+), was prepared from CrCl(2), 2-aminoethylphosphonic acid, and urea in water and isolated as light-blue crystals. It crystallizes in the noncentrosymmetric monoclinic space group P2(1), with a = 5.249(1) A, b = 14.133(3) A, c = 5.275(1) A, and beta = 105.55(2) degrees. The inorganic layer of the hybrid network is formed by Cr(II) five-coordinated by three oxygen atoms from the phosphonates and one from the water molecule in a square pyramidal unit, whose apical position is occupied by the Cl(-) ion. Hydrogen bonds are established between the coordinating water molecule and the oxygen atoms of adjacent phosphonate ligands. The inorganic network is interspersed by ethylammonium groups, and the terminal ammonium moiety is linked to the apical Cl(-) ions through hydrogen bonds. Electrostatic interactions as well as hydrogen bonds and the coordinated chlorine atoms ensure the cohesion of the 3D structure. The lattice is polar (lack of inversion center), and this fact determines the magnetic behavior of the compound at low temperatures. The magnetic susceptibility data in the temperature range from 300 to 50 K show Curie-Weiss behavior, with C = 2.716 cm(3) K mol(-1) and the Weiss constant theta = -2.2 K. The corresponding effective magnetic moment of 4.7 mu(B) compares well with the expected value for Cr(2+) in d(4) high-spin configuration. A slight decrease of the chiT product versus T observed at temperatures below 50 K indicates nearest-neighbor antiferromagnetic exchange interactions. On cooling below T = 6 K, the magnetic susceptibility increases sharply up to a maximum at ca. 5 K and then decreases again. Below T = 6 K, hysteresis loops taken at different temperatures show that Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] behaves as a weak ferromagnet with the critical temperature T(N) at 5.5 K. The spin canting is responsible of the long-range magnetic ordering. The values of the coercive field, H(c), and of remnant magnetization, M(r), obtained from the hysteresis loop at T = 4.5 K (the lowest measured temperature) are 30 Oe and 0.08 mu(B), respectively.

6.
Chemistry ; 9(6): 1324-31, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12645022

RESUMO

[Ni(CH(3)PO(3))(H(2)O)] (1) and [Ni(CH(3)-(CH(2))(17)-PO(3))(H(2)O)] (2) were synthesised by reaction of NiCl(2).6 H(2)O and the relevant phosphonic acid in water in presence of urea. The compounds were characterised by elemental and thermogravimetric analyses, UV-visible and IR spectroscopy, and their magnetic properties were studied by using a SQUID magnetometer. The crystal structure of 1 was determined "ab initio" from X-ray powder diffraction data and refined by the Rietveld method. The crystals of 1 are orthorhombic, space group Pmn2(1), with a=5.587(1), b=8.698(1), c=4.731(1) A. The compound has a hybrid, layered structure made up of alternating inorganic and organic layers along the b direction of the unit-cell. The inorganic layers consist of Ni(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one oxygen atom from the water molecule. These layers are separated by bilayers of methyl groups and van der Waals contacts are established between them. A preliminary structure characterisation of compound 2 suggests the crystallisation in the orthorhombic system with the following unit-cell parameters: a=5.478(7), b=42.31(4), c=4.725(3) A. The oxidation state of the Ni ion in both compounds is +2, and the electronic configuration is d(8) (S=1), as determined from static magnetic susceptibility measurements above 50 K. Compound 1 obeys the Curie-Weiss law at temperatures above 50 K; the Curie (C) and Weiss (theta) constants were found to be 1.15 cm(3) K mol(-1) and -32 K, respectively. The negative value of theta indicates an antiferromagnetic exchange coupling between near-neighbouring Ni(II) ions. No sign of 3D antiferromagnetic long-range order is observed down to T=5 K, the lowest measured temperature. Compound 2 is paramagnetic above T=50 K, and the values of C and theta were found to be 1.25 cm(3) K mol(-1) and -24 K, respectively. Below 50 K the magnetic behavior of 2 is different from that of 1. Zero-field cooled (zfc) and field-cooled (fc) magnetisation plots do not overlap below T=21 K. The irreversible magnetisation, DeltaM(fc-zfc), obtained as a difference from fc and zfc plots starts to increase at T=20 K, on lowering the temperature, and it becomes steady at T=5 K. The presence of spontaneous magnetisation below T=20 K indicates a transition to a weak-ferromagnetic state for compound 2.

7.
Chemistry ; 8(11): 2539-48, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12180333

RESUMO

The compounds [Cu(Tz)-(MeOH)2](TCNQ)2 (1), [Ni(Tz)-(MeOH)2](TCNQ)2 (2), [Cu(Tz)2]-(TCNQ)7 (3) and [Ni(Tz)2](TCNQ)7 (4) (Tz = 2,7,12,17-tetramethyl-1,6,11,16-tetraazaporphyrinogen) were obtained by metathesis reaction of [M(Tz)](ClO4)2 with LiTCNQ and Et3NH(TCNQ)2, respectively. They were characterized by a combination of spectroscopic and physical methods. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 8.310(2), b = 25.180(4), c = 20.727(4) A, beta = 93.58(2) degrees; Z = 4. Compound 3 crystallizes in the triclinic space group P1 with a = 11.244(1), b = 16.700(1), c = 17.321(1) A, a = 113.47(1), beta = 108.52(1), gamma = 96.12(1) degrees; Z = 2. The asymmetric unit of the compound 1 is formed by cationic [Cu(Tz)(MeOH)2]2+ and by two crystallographically non equivalent TCNQ.- anions; these anions form dimeric units by overlap of the pi clouds. The dimers form hydrogen bonds with the metal-lomacrocyclic cation through the methanol ligands. According to this structure the compound is paramagnetic and behaves as an insulator in the temperature range studied. The paramagnetism arises only from the metal-complex moieties. Compound 3 shows an unprecedented structure due to the steric requirements of the macrocycle that favors the stacking of the TCNQ groups. The structure consists of infinite stacks of TCNQ units separated by the metal-macrocyclic units; there are seven TCNQ molecules per formula unit, one of which is formally mono-anionic, while the other six bear one half of an electron per molecule. The copper is six-coordinate in a very distorted octahedral environment. The Tz ligand is located in the equatorial plane and the apical nitrogens of the nitrile groups of two TCNQ molecules complete the coordination around the copper. The compound is a semiconductor and its magnetic behavior can be explained by the sum of the Curie contribution of the metal complex and the contribution arising from the magnetic-exchange interactions of the spins located on the TCNQ units. The latter is found to be typical of one-dimensional antiferromagnetic distorted chains of S = 1/2 spins and can be fitted according to a one-dimensional Heisenberg antiferromagnetic model.

8.
Inorg Chem ; 41(4): 709-14, 2002 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-11849070

RESUMO

The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.

9.
Inorg Chem ; 38(20): 4430-4434, 1999 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-11671153

RESUMO

The compound [Fe(cyclam)(NCS)(2)](TCNQ)(2), where cyclam is 1,4,8,11-tetraazacyclotetradecane and TCNQ is a partially reduced 7,7,8,8-tetracyanoquinodimethane fragment, has been obtained from the corresponding thiocyanate by metathesis reaction. The compound crystallizes in the triclinic system, space group P&onemacr;, a = 7.832(3) Å, b = 8.008(2) Å, c = 15.501(3) Å, alpha = 79.85(2) degrees, beta = 85.11(2) degrees, gamma = 74.18(3) degrees, Z = 1. The crystalline lattice consists of one-dimensional TCNQ units, stacked along the a direction, and it is stabilized by interactions with the Fe(III) hexacoordinated complex cations. All of the TCNQ's are crystallographically equivalent, with bond parameters typical of partially reduced acceptors with a formal charge of 0.5 electron. Two different distances between adjacent TCNQ units are observed, i.e., 3.29 and 3.42 Å, indicating the presence of dimeric (TCNQ)(2)(-) in the chains. The temperature dependence of the magnetic susceptibility was described as due to two contributions: the first one comes from the Curie contribution of the Fe(III) complex while the second arises from the magnetic exchange interactions between the nearest neighbor TCNQ anions. The latter is typical of one-dimensional antiferromagnetic chains of S = (1)/(2) spins, localized on (TCNQ)(2)(-) units, and it could be fitted according to a one-dimensional Heisenberg antiferromagnet model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...