Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 136(14): 144310, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22502521

RESUMO

We present theoretical elastic and electronic excitation cross sections and experimental electronic excitation cross sections for electron collisions with pyrimidine. We use the R-matrix method to determine elastic integral and differential cross sections and integral inelastic cross sections for energies up to 15 eV. The experimental inelastic cross sections have been determined in the 15-50 eV impact energy range. Typically, there is quite reasonable agreement between the theoretical and experimental integral inelastic cross sections. Calculated elastic cross sections agree very well with prior results.


Assuntos
Elasticidade , Elétrons , Pirimidinas/química
2.
J Chem Phys ; 128(11): 114314, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18361578

RESUMO

The binding energies of the p-, m-, and o-difluorobenzene-H(2)O complexes have been measured by velocity map ion imaging to be 922+/-10, 945+/-10, and 891+/-4 cm(-1), respectively. The lack of variation provides circumstantial evidence for water binding to the three isomers via the same interaction, viz. an in-plane O-H...F hydrogen bond to one of the fluorine atoms on the ring, with a second, weaker interaction of the water O atom with an ortho hydrogen, as determined previously for the p-difluorobenzene-H(2)O complex [Kang et al., J. Phys. Chem. A 109, 767 (2005)]. The ground state binding energies for the difluorobenzene-H(2)O complexes are approximately 5%-11% larger than that for benzene-H(2)O, where binding occurs to the pi electrons out-of-plane. However, in the S(1) state the binding energies of the o- and p-difluorobenzene-H(2)O complexes are smaller than the benzene-H(2)O value, raising an interesting question about whether the geometry at the global energy minimum remains in-plane in the excited electronic states of these two complexes. Recoil energy distributions for dissociation of p-difluorobenzene-H(2)O have been measured from the 3(1), 5(2), and 3(1)5(1) levels of the excited electronic state. These levels are 490, 880, and 1304 cm(-1), respectively, above the dissociation threshold. Within the experimental uncertainty, the recoil energy distributions are the same for dissociation from these three states, with average recoil energies of approximately 100 cm(-1). These recoil energies are 60% larger than was observed for the dissociation of p-difluorobenzene-Ar, which is a substantially smaller increase than the 400% seen in a comparable study of dissociation within the triplet state for pyrazine-Ar, -H(2)O complexes. The majority of the available energy is partitioned into vibration and rotation of the fragments.

3.
J Chem Phys ; 122(22): 224306, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15974667

RESUMO

Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.

4.
J Chem Phys ; 122(10): 104305, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15836313

RESUMO

Velocity map imaging has been used to measure the distributions of translational energy released in the dissociation of p-difluorobenzene-Ar van der Waals complexes from the 5(1), 3(1), 5(2), 3(1)5(1), 5(3), 3(2), and 3(2)5(1) states. These states span 818-3317 cm(-1) of vibrational energy and correspond to a range of energies above dissociation of 451-2950 cm(-1). The translational energy release (recoil energy) distributions are remarkably similar, peaking at very low energy (10-20 cm(-1)) and decaying in an exponential fashion to approach zero near 300 cm(-1). The average translational energy released is small, shows no dependence on the initial vibrational energy, and spans the range 58-72 cm(-1) for the vibrational levels probed. The average value for the seven levels studied is 63 cm(-1). The low fraction of transfer to translation is qualitatively in accord with Ewing's momentum gap model [G. E. Ewing, Faraday Discuss. 73, 325 (1982)]. No evidence is found in the distributions for a high energy tail, although it is likely that the experiment is not sufficiently sensitive to detect a low fraction of transfer at high translational energies. The average translational energy released is lower than has been seen in comparable systems dissociating from triplet and cation states.

5.
J Chem Phys ; 122(7): 074311, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15743236

RESUMO

The translational energy release distribution for dissociation of benzene-Ar has been measured and, in combination with the 6(1)(0) rotational contour of the benzene product observed in emission, used to determine the rotational J,K distribution of 0(0) benzene products formed during dissociation from 6(1). Significant angular momentum is transferred to benzene on dissociation. The 0(0) rotational distribution peaks at J=31 and is skewed to low K:Javerage=27, (K)average=10.3. The average angle between the total angular momentum vector and the unique rotational axis is determined to be 68 degrees. This indicates that benzene is formed tumbling about in-plane axes rather than in a frisbeelike motion, consistent with Ar "pushing off" benzene from an off-center position above or below the plane. The J distribution is very well reproduced by angular momentum model calculations based on an equivalent rotor approach [A. J. McCaffery, M. A. Osborne, R. J. Marsh, W. D. Lawrance, and E. R. Waclawik, J. Chem. Phys. 121, 1694 (2004)], indicating that angular momentum constraints control the partitioning of energy between translation and rotation. Calculations for p-difluorobenzene-Ar suggest that the equivalent rotor model can provide a reasonable prediction of both J and K distributions in prolate (or near prolate) tops when dissociation leads to excitation about the unique, in-plane axis. Calculations for s-tetrazine-Ar require a small maximum impact parameter to reproduce the comparatively low J values seen for the s-tetrazine product. The three sets of calculations show that the maximum impact parameter is not necessarily equal to the bond length of the equivalent rotor and must be treated as a variable parameter. The success of the equivalent rotor calculations argues that angular momentum constraints control the partitioning between rotation and translation of the products.

6.
Phys Rev Lett ; 91(26 Pt 1): 263002, 2003 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-14754048

RESUMO

Photoelectron angular distributions (PADs) have been measured following the excitation of the S1 origin band in paradifluorobenzene using a range of ionizing wavelengths and for resolved ion vibrational states. The PADs show a dramatic sensitivity to the photoelectron kinetic energy over an energy range of at least 1 eV from threshold, and almost no sensitivity to any prepared intermediate state alignment. This has important consequences for those studies of intramolecular dynamics that use PADs. We suggest that the observed behavior is caused by a shape resonance in the continuum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...