Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(8): 1969-1980, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36315089

RESUMO

A surfactant-modified coal fly ash was developed as a multifunctional adsorbent for the removal of organic pollutants from wastewater. Sodium dodecyl sulfate (SDS) was used to modify the surface of coal fly ash (CFA). The modified CFA was characterized using scanning electron microscopy (SEM), surface porosity analyzer, thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The results showed that loading CFA with SDS not only improved the functionality and surface morphology of the raw ash for the adsorption of organic pollutants, but also enhanced its thermal stability. The efficiency of the modified fly ash was tested in terms of removal of two non-polar organic pollutants namely chlorobenzene (CB) and nitrobenzene (NB) from aqueous phase. The maximum uptake capacity of chlorobenzene and nitrobenzene with SDS-modified coal fly ash (SCFA) was 225 mg/g and 90 mg/g, respectively. The kinetic analysis was done by controlled kinetic models, i.e., pseudo first and second order kinetic models. The results showed that adsorption of CB and NB onto SCFA followed a pseudo second order kinetic model. The adsorption of chlorobenzene was exothermic over the modified adsorbent while nitrobenzene showed an endothermic behavior. The isotherm analysis depicted the multilayer adsorption of both pollutants onto the surface of the surfactant modified adsorbent. This work has shown that surface modification using surfactants can be a viable option to enhance the adsorption capacity of fly ash for pollutants removal.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Cinza de Carvão/química , Benzeno , Cinética , Tensoativos , Poluentes Químicos da Água/química , Adsorção , Carvão Mineral , Nitrobenzenos , Clorobenzenos , Concentração de Íons de Hidrogênio
2.
Waste Manag Res ; 38(11): 1284-1294, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32347191

RESUMO

Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.


Assuntos
Carbono , Celulose , Biomassa , Hidrogênio , Temperatura
3.
Heliyon ; 5(9): e02396, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31517121

RESUMO

In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.

4.
J Environ Manage ; 198(Pt 1): 170-182, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460324

RESUMO

Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges.


Assuntos
Resíduos Industriais , Óleos de Plantas , Eliminação de Resíduos Líquidos , Óleo de Palmeira , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...