Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37754738

RESUMO

Insect culture has developed rapidly worldwide; it faces important security and safety control issues, including animal infections and disease development. In the Netherlands, in 2021, a ~30% mortality of mealworms, Tenebrio molitor, occurred at one farm, where over-humid sites in the substrate were observed. Bacterial cultures from both the external and internal partsof fry and larger mealworms were identified by MALDI-TOF to predominantly Serratia marcescens, Staphylococcus xylosus and Staphylococus saprofyticus. Due to the important role of S. marcescens as a potential zoonotic bacterium, we performed a molecular characterization of the isolated strain. Genomic analysis showed a multidrug-resistant S. marcescens isolate carrying a tet (41), aac (6')-Ic, and blaSST-1 chromosomal class C beta-lactamase-resistantgenes, all located on the chromosome. Additionally, several virulence genes were identified. The phylogenetic tree revealed that the S. marcescens strain from this study was similar to other S. marcescens strains from different ecological niches. Although the entomopathogenic activity was not confirmed, this case demonstrates that T. molitor can act as a reservoir and as an alternative path for exposing clinically important antibiotic-resistant bacteria that can affect animals and humans. It underlines the need to keep management factors optimal, before insects and their products enter the feed and food chain.

2.
Anim Microbiome ; 4(1): 51, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986389

RESUMO

BACKGROUND: Broilers are among the most common and dense poultry production systems, where antimicrobials have been used extensively to promote animal health and performance. The continuous usage of antimicrobials has contributed to the appearance of resistant bacteria, such as extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec). Here, we studied the ESBL-Ec prevalence and successional dynamics of the caecal microbiota of developing broilers in a commercial flock during their production life cycle (0-35 days). Broilers were categorised as ESBL-Ec colonised (ESBL-Ec+) or ESBL-Ec non-colonised (ESBL-Ec-) by selective culturing. Using 16S rRNA gene sequencing, we i. compared the richness, evenness and composition of the caecal microbiota of both broilers' groups and ii. assessed the combined role of age and ESBL-Ec status on the broilers' caecal microbiota. RESULTS: From day two, we observed an increasing linear trend in the proportions of ESBL-Ec throughout the broilers' production life cycle, X2 (1, N = 12) = 28.4, p < 0.001. Over time, the caecal microbiota richness was consistently higher in ESBL-Ec- broilers, but significant differences between both broilers' groups were found exclusively on day three (Wilcoxon rank-sum test, p = 0.016). Bray-Curtis distance-based RDA (BC-dbRDA) showed no explanatory power of ESBL-Ec status, while age explained 14% of the compositional variation of the caecal microbiota, F (2, 66) = 6.47, p = 0.001. CONCLUSIONS: This study assessed the role of ESBL-Ec in the successional dynamics of the caecal microbiota in developing broilers and showed that the presence of ESBL-Ec is associated with mild but consistent reductions in alpha diversity and with transient bacterial compositional differences. We also reported the clonal spread of ESBL-Ec and pointed to the farm environment as a likely source for ESBLs.

3.
Front Microbiol ; 13: 866674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814663

RESUMO

This study aimed to characterize the changes in fecal carriage of Extended-Spectrum ß-Lactamase (ESBL) producing Enterobacterales (ESBL-PE) in a single Dutch veal calves. During the rearing period at the Dutch veal farm, a decrease in fecal carriage of cefotaxime-resistant Escherichia coli isolates was observed after 2 weeks at the veal farm, while an increase of cefotaxime-resistant Klebsiella pneumoniae isolates was demonstrated. E. coli and K. pneumoniae were isolated from rectal swabs collected from 110 veal calves in week 2, 6, 10, 18, and 24 after their arrival at the farm. ESBL-PE isolates were selectively cultured and identified by MALDI-TOF. ESBL genes were characterized by RT-PCR, PCRs, and amplicon sequencing. A total of 80 E. coli and 174 K. pneumoniae strains were isolated from 104 out of 110 veal calves. The prevalence of ESBL-E. coli decreased from week 2 (61%) to week 6 (7%), while an unexpected increase in ESBL-K. pneumoniae colonization was detected in week 6 (80%). The predominant ESBL genes detected in E. coli isolates were bla CTX-M-15 and the non-ESBL gene bla TEM-1a, while in K. pneumoniae bla CTX-M-14 gene was detected in all isolates. Four cefotaxime-resistant K. pneumoniae isolates were randomly selected and characterized in deep by transformation, PCR-based replicon typing, and whole-genome sequencing (WGS). The clonal relatedness of a subgroup of nine animals carrying K. pneumoniae ESBL genes was investigated by Multi Locus sequence typing (MLST). In four ESBL-K. pneumoniae isolates, bla CTX-M-14 was located on IncFIIK and IncFIINK plasmid replicons and the isolates were multi-drug resistant (MDR). MLST demonstrated a clonal spread of ESBL-K. pneumoniae ST107. To the best of our knowledge, this is the first study to report a change in fecal carriage of ESBL-PE over time in the same veal calf during the rearing period.

4.
Front Microbiol ; 12: 670535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721311

RESUMO

Bacteriocins are narrow-spectrum protein antibiotics that could potentially be used to engineer the human gut microbiota. However, technologies for targeted delivery of proteins to the lower gastrointestinal (GI) tract in preclinical animal models are currently lacking. In this work, we have developed methods for the microencapsulation of Escherichia coli targeting bacteriocins, colicin E9 and Ia, in a pH responsive formulation to allow their targeted delivery and controlled release in an in vivo murine model of E. coli colonization. Membrane emulsification was used to produce a water-in-oil emulsion with the water-soluble polymer subsequently cross-linked to produce hydrogel microcapsules. The microcapsule fabrication process allowed control of the size of the drug delivery system and a near 100% yield of the encapsulated therapeutic cargo. pH-triggered release of the encapsulated colicins was achieved using a widely available pH-responsive anionic copolymer in combination with alginate biopolymers. In vivo experiments using a murine E. coli intestinal colonization model demonstrated that oral delivery of the encapsulated colicins resulted in a significant decrease in intestinal colonization and reduction in E. coli shedding in the feces of the animals. Employing controlled release drug delivery systems such as that described here is essential to enable delivery of new protein therapeutics or other biological interventions for testing within small animal models of infection. Such approaches may have considerable value for the future development of strategies to engineer the human gut microbiota, which is central to health and disease.

5.
Front Microbiol ; 8: 1596, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894438

RESUMO

Enterococci have emerged as important opportunistic pathogens in intensive care units (ICUs). In this study, enterococcal population size and Enterococcus isolates colonizing the intestinal tract of ICU patients receiving Selective Digestive Decontamination (SDD) were investigated. All nine patients included in the study showed substantial shifts in the enterococcal 16S rRNA gene copy number in the gut microbiota during the hospitalization period. Furthermore, 41 Enterococcus spp. strains were isolated and characterized from these patients at different time points during and after ICU hospitalization, including E. faecalis (n = 13), E. faecium (n = 23), and five isolates that could not unequivocally assigned to a specific species (E. sp. n = 5) Multi locus sequence typing revealed a high prevalence of ST 6 in E. faecalis isolates (46%) and ST 117 in E. faecium (52%). Furthermore, antibiotic resistance phenotypes, including macrolide and vancomycin resistance, as well as virulence factor-encoding genes [asa1, esp-fm, esp-fs, hyl, and cyl (B)] were investigated in all isolates. Resistance to ampicillin and tetracycline was observed in 25 (61%) and 19 (46%) isolates, respectively. Furthermore, 30 out of 41 isolates harbored the erm (B) gene, mainly present in E. faecium isolates (78%). The most prevalent virulence genes were asa1 in E. faecalis (54%) and esp (esp-fm, 74%; esp-fs, 39%). Six out of nine patients developed nosocomial enterococcal infections, however, corresponding clinical isolates were unfortunately not available for further analysis. Our results show that multiple Enterococcus species, carrying several antibiotic resistance and virulence genes, occurred simultaneously in patients receiving SDD therapy, with varying prevalence dynamics over time. Furthermore, simultaneous presence and/or replacement of E. faecium STs was observed-, reinforcing the importance of screening multiple isolates to comprehensively characterize enterococcal diversity in ICU patients.

6.
Microbiome ; 5(1): 88, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28803549

RESUMO

BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD.


Assuntos
Antibioticoprofilaxia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Unidades de Terapia Intensiva , Idoso , Aminoglicosídeos/administração & dosagem , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estado Terminal , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Voluntários Saudáveis , Hospitalização , Humanos , Macrolídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...