Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 94(4): 341-351, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958377

RESUMO

BACKGROUND: Schizophrenia (SCZ) is caused by an interplay of polygenic risk and environmental factors, which may alter regulators of gene expression leading to pathogenic misexpression of SCZ risk genes. The CPEB family of RNA-binding proteins (CPEB1-4) regulates translation of target RNAs (approximately 40% of overall genes). We previously identified CPEB4 as a key dysregulated translational regulator in autism spectrum disorder (ASD) because its neuronal-specific microexon (exon 4) is mis-spliced in ASD brains, causing underexpression of numerous ASD risk genes. The genetic factors and pathogenic mechanisms shared between SCZ and ASD led us to hypothesize CPEB4 mis-splicing in SCZ leading to underexpression of multiple SCZ-related genes. METHODS: We performed MAGMA-enrichment analysis on Psychiatric Genomics Consortium genome-wide association study data and analyzed RNA sequencing data from the PsychENCODE Consortium. Reverse transcriptase polymerase chain reaction and Western blot were performed on postmortem brain tissue, and the presence/absence of antipsychotics was assessed through toxicological analysis. Finally, mice with mild overexpression of exon 4-lacking CPEB4 (CPEB4Δ4) were generated and analyzed biochemically and behaviorally. RESULTS: First, we found enrichment of SCZ-associated genes for CPEB4-binder transcripts. We also found decreased usage of CPEB4 microexon in SCZ probands, which was correlated with decreased protein levels of CPEB4-target SCZ-associated genes only in antipsychotic-free individuals. Interestingly, differentially expressed genes fit those reported for SCZ, specifically in the SCZ probands with decreased CPEB4-microexon inclusion. Finally, we demonstrated that mice with mild overexpression of CPEB4Δ4 showed decreased protein levels of CPEB4-target SCZ genes and SCZ-linked behaviors. CONCLUSIONS: We identified aberrant CPEB4 splicing and downstream misexpression of SCZ risk genes as a novel etiological mechanism in SCZ.


Assuntos
Antipsicóticos , Transtorno do Espectro Autista , Esquizofrenia , Animais , Camundongos , Antipsicóticos/uso terapêutico , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/genética , Esquizofrenia/tratamento farmacológico
2.
Genome Biol ; 23(1): 192, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096799

RESUMO

BACKGROUND: Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date. RESULTS: Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs. CONCLUSIONS: Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.


Assuntos
Fatores de Transcrição , Fatores de Poliadenilação e Clivagem de mRNA , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
3.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586830

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Assuntos
Doença de Huntington , Poliadenilação , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas de Membrana Transportadoras , Transcriptoma
4.
RNA ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323527

RESUMO

Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression. CPEB1 mediates mRNA localization to the meiotic spindle, which is required to ensure proper chromosome segregation. Temporal translational regulation also takes place in mitosis, where a large repertoire of transcripts are activated or repressed in specific cell cycle phases. However, whether control of localized translation at the spindle is required for mitosis is unclear, as mitotic and acentriolar-meiotic spindles are functionally and structurally different. Furthermore, the large differences in scale-ratio between cell volume and spindle size in oocytes compared to somatic mitotic cells may generate distinct requirements for gene expression compartmentalization in meiosis and mitosis. Here we show that mitotic spindles contain CPE-localized mRNAs and translating ribosomes. Moreover, CPEB1 and CPEB4 localize in the spindles and they may function sequentially in promoting mitotic stage transitions and correct chromosome segregation. Thus, CPEB1 and CPEB4 bind to specific spindle-associated transcripts controlling the expression and/or localization of their encoded factors that, respectively, drive metaphase and anaphase/cytokinesis.

5.
Nat Struct Mol Biol ; 26(8): 755, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31300740

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 560(7719): 441-446, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111840

RESUMO

Common genetic contributions to autism spectrum disorder (ASD) reside in risk gene variants that individually have minimal effect sizes. As environmental factors that perturb neurodevelopment also underlie idiopathic ASD, it is crucial to identify altered regulators that can orchestrate multiple ASD risk genes during neurodevelopment. Cytoplasmic polyadenylation element binding proteins 1-4 (CPEB1-4) regulate the translation of specific mRNAs by modulating their poly(A)-tails and thereby participate in embryonic development and synaptic plasticity. Here we find that CPEB4 binds transcripts of most high-confidence ASD risk genes. The brains of individuals with idiopathic ASD show imbalances in CPEB4 transcript isoforms that result from decreased inclusion of a neuron-specific microexon. In addition, 9% of the transcriptome shows reduced poly(A)-tail length. Notably, this percentage is much higher for high-confidence ASD risk genes, correlating with reduced expression of the protein products of ASD risk genes. An equivalent imbalance in CPEB4 transcript isoforms in mice mimics the changes in mRNA polyadenylation and protein expression of ASD risk genes and induces ASD-like neuroanatomical, electrophysiological and behavioural phenotypes. Together, these data identify CPEB4 as a regulator of ASD risk genes.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Predisposição Genética para Doença/genética , Poliadenilação , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Éxons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fenótipo , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma
7.
Nat Struct Mol Biol ; 24(8): 672-681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714992

RESUMO

The translational reactivation of maternal mRNAs encoding meiotic drivers in vertebrates is accomplished mainly by cytoplasmic polyadenylation. The cytoplasmic polyadenylation elements (CPEs) present in the 3' untranslated regions (3' UTRs) of these transcripts, together with their cognate CPE-binding proteins (CPEBs), define a combinatorial code that determines the timing and extent of translational activation upon meiosis resumption. In addition, the RNA-binding protein Musashi1 (Msi1) regulates polyadenylation of CPE-containing mRNAs by a yet undefined CPEB-dependent or CPEB-independent mechanism. Here we show that Msi1 alone does not support cytoplasmic polyadenylation, but its binding triggers the remodeling of RNA structure, thereby exposing adjacent CPEs and stimulating polyadenylation. In this way, Msi1 directs the preferential use of specific CPEs, which in turn affects the timing and extent of polyadenylation during meiotic progression. Genome-wide analysis of CPEB1- and Msi1-associated mRNAs identified 491 common targets, thus revealing a new layer of CPE-mediated translational control.


Assuntos
Regulação da Expressão Gênica , Meiose , Proteínas do Tecido Nervoso/metabolismo , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química , Ribonucleoproteínas , Xenopus laevis
8.
PLoS One ; 11(2): e0146792, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829217

RESUMO

Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasmic polyadenylation elements (CPEs) and two miR-15/16 target sites within its 3'UTR. Moreover, we provide evidence that maternal miR-15/16 microRNAs co-immunoprecipitate with CPE-binding protein (CPEB), and that CPEB interacts with the RISC component Ago2. Experiments using competitor RNA and mutated cyclin E1 3'UTRs suggest cooperation of the regulatory elements to sustain repression of the cyclin E1 mRNA during early stages of maturation when CPEB becomes limiting and cytoplasmic polyadenylation of repressed mRNAs begins. Importantly, injection of anti-miR-15/16 LNA results in the early polyadenylation of endogenous cyclin E1 mRNA during meiotic maturation, and an acceleration of GVBD, altogether strongly suggesting that the proximal CPEB and miRNP complexes act to mutually stabilise each other. We conclude that miR-15/16 and CPEB co-regulate cyclin E1 mRNA. This is the first demonstration of the co-operation of these two pathways.


Assuntos
Ciclina E/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Oogênese/genética , Biossíntese de Proteínas/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Sequência de Bases , Ciclina E/metabolismo , Feminino , Meiose , MicroRNAs/genética , Modelos Biológicos , Dados de Sequência Molecular , Sinais de Poliadenilação na Ponta 3' do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas de Xenopus/metabolismo
9.
Genes Dev ; 28(13): 1498-514, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990967

RESUMO

Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3' untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein-protein and protein-RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3' UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.


Assuntos
Modelos Moleculares , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 3' não Traduzidas , Motivos de Aminoácidos , Cristalografia por Raios X , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína , RNA/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
10.
Nat Struct Mol Biol ; 19(6): 577-85, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22664985

RESUMO

Beyond the well-known function of poly(A) tail length in mRNA stability, recent years have witnessed an explosion of information about how changes in tail length and the selection of alternative polyadenylation sites contribute to the translational regulation of a large portion of the genome. The mechanisms and factors mediating nuclear and cytoplasmic changes in poly(A) tail length have been studied in great detail, the targets of these mechanisms have been identified--in some cases by genome-wide screenings--and changes in poly(A) tail length are now implicated in a number of physiological and pathological processes. However, in very few cases have all three levels--mechanisms, targets and functions--been studied together.


Assuntos
Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Citoplasma/química , Citoplasma/metabolismo , Humanos , Poli A/química , Poliadenilação , RNA Mensageiro/química
11.
Biochem Soc Trans ; 36(Pt 4): 665-70, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18631137

RESUMO

The maternal mRNAs that drive meiotic progression in oocytes contain short poly(A) tails and it is only when these tails are elongated that translation takes place. Cytoplasmic polyadenylation requires two elements in the 3'-UTR (3'-untranslated region), the hexanucleotide AAUAAA and the CPE (cytoplasmic polyadenylation element), which also participates in the transport and localization, in a quiescent state, of its targets. However, not all CPE-containing mRNAs are activated at the same time during the cell cycle, and polyadenylation is temporally and spatially regulated during meiosis. We have recently deciphered a combinatorial code that can be used to qualitatively and quantitatively predict the translational behaviour of CPE-containing mRNAs. This code defines positive and negative feedback loops that generate waves of polyadenylation and deadenylation, creating a circuit of mRNA-specific translational regulation that drives meiotic progression.


Assuntos
Adenina/metabolismo , Meiose , Poliadenilação/fisiologia , Biossíntese de Proteínas , Animais , Diferenciação Celular , Citoplasma/metabolismo
12.
Nature ; 452(7190): 1017-21, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18385675

RESUMO

In vertebrate oocytes, meiotic progression is driven by the sequential translational activation of maternal messenger RNAs stored in the cytoplasm. This activation is mainly induced by the cytoplasmic elongation of their poly(A) tails, which is mediated by the cytoplasmic polyadenylation element (CPE) present in their 3' untranslated regions. In Xenopus oocytes, sequential phase-specific translation of CPE-regulated mRNAs is required to activate the maturation-promoting factor, which in turn mediates entry into the two consecutive meiotic metaphases (MI and MII). Here we report a genome-wide functional screening to identify previously unknown mRNAs cytoplasmically polyadenylated at meiotic phase transitions. A significant fraction of transcripts containing, in addition to CPEs, (A + U)-rich element (ARE) sequences (characteristic of mRNAs regulated by deadenylation) were identified. Among these is the mRNA encoding C3H-4, an ARE-binding protein that we find to accumulate in MI and the ablation of which induces meiotic arrest. Our results suggest that C3H-4 recruits the CCR4 deadenylase complex to ARE-containing mRNAs and this, in turn, causes shortening of poly(A) tails. We also show that the opposing activities of the CPEs and the AREs define the precise activation times of the mRNAs encoding the anaphase-promoting complex inhibitors Emi1 and Emi2 during distinct phases of the meiotic cycle. Taken together, our results show that an 'early' wave of cytoplasmic polyadenylation activates a negative feedback loop by activating the synthesis of C3H-4, which in turn would recruit the deadenylase complex to mRNAs containing both CPEs and AREs. This negative feedback loop is required to exit from metaphase into interkinesis and for meiotic progression.


Assuntos
Retroalimentação Fisiológica/genética , Meiose , Metáfase , Oócitos/citologia , Poliadenilação , Animais , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Feminino , Genoma/genética , Meiose/genética , Oócitos/metabolismo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Poliadenilação/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...