Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 4(1): 100462, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190107

RESUMO

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.


Assuntos
Fatores de Transcrição , Cromossomo Y , Humanos , Masculino , Feminino , Fatores de Transcrição/genética , Cromossomos Humanos X/genética , Aberrações dos Cromossomos Sexuais , Expressão Gênica/genética
2.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333288

RESUMO

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.

3.
Cell Genom ; 3(2): 100259, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819663

RESUMO

The "inactive" X chromosome (Xi) has been assumed to have little impact, in trans, on the "active" X (Xa). To test this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38% (162/423) of expressed X chromosome genes. By integrating allele-specific analyses, we found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes). By incorporating metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.

4.
BMC Biol ; 20(1): 133, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676717

RESUMO

BACKGROUND: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history. RESULTS: We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. CONCLUSIONS: PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.


Assuntos
Eutérios , Cromossomo Y , Animais , Bovinos , Eutérios/genética , Feminino , Masculino , Mamíferos/genética , Camundongos , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética
5.
PLoS One ; 17(6): e0269692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700171

RESUMO

The reference sequence of structurally complex regions can only be obtained through a highly accurate clone-based approach that we call Single-Haplotype Iterative Mapping and Sequencing (SHIMS). In recent years, improvements to SHIMS have reduced the cost and time required by two orders of magnitude, but internally repetitive clones still require extensive manual effort to transform draft assemblies into reference-quality finished sequences. Here we describe SHIMS 3.0, using ultra-long nanopore reads to augment the Illumina data from SHIMS 2.0 assemblies and resolve internally repetitive structures. This greatly minimizes the need for manual finishing of Illumina-based draft assemblies, allowing a small team with no prior finishing experience to sequence challenging targets with high accuracy. This protocol proceeds from clone-picking to finished assemblies in 2 weeks for about $80 (USD) per clone. We recently used this protocol to produce reference sequence of structurally complex palindromes on chimpanzee and rhesus macaque X chromosomes. Our protocol provides access to structurally complex regions that would otherwise be inaccessible from whole-genome shotgun data or require an impractical amount of manual effort to generate an accurate assembly.


Assuntos
Nanoporos , Animais , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imidoésteres , Macaca mulatta , Análise de Sequência de DNA/métodos
6.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849781

RESUMO

Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence identity greater than 99%, which may increase their susceptibility to the effects of GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content than flanking single-copy sequences. Nucleotide replacements that occurred in human and chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed pattern of nucleotide replacements is consistent with GC-biased gene conversion with a magnitude of 70%, similar to previously reported values based on analyses of human meioses. However, GC-biased gene conversion since the divergence of human and rhesus macaque explains only a fraction of the observed difference in GC content between palindrome arms and flanking sequence, suggesting that palindromes are older than 29 million years and/or had elevated GC content at the time of their formation. This work supports a greater than 2:1 preference for GC bases over AT bases during gene conversion and demonstrates that the evolution and composition of mammalian sex chromosome palindromes is strongly influenced by GC-biased gene conversion.


Assuntos
Conversão Gênica , Pan troglodytes , Animais , Evolução Molecular , Humanos , Sequências Repetidas Invertidas , Macaca mulatta/genética , Pan troglodytes/genética , Cromossomo X/genética
7.
Genome Res ; 31(8): 1337-1352, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290043

RESUMO

Mammalian sex chromosomes carry large palindromes that harbor protein-coding gene families with testis-biased expression. However, there are few known examples of sex-chromosome palindromes conserved between species. We identified 26 palindromes on the human X Chromosome, constituting more than 2% of its sequence, and characterized orthologous palindromes in the chimpanzee and the rhesus macaque using a clone-based sequencing approach that incorporates full-length nanopore reads. Many of these palindromes are missing or misassembled in the current reference assemblies of these species' genomes. We find that 12 human X palindromes have been conserved for at least 25 million years, with orthologs in both chimpanzee and rhesus macaque. Insertions and deletions between species are significantly depleted within the X palindromes' protein-coding genes compared to their noncoding sequence, demonstrating that natural selection has preserved these gene families. The spacers that separate the left and right arms of palindromes are a site of localized structural instability, with seven of 12 conserved palindromes showing no spacer orthology between human and rhesus macaque. Analysis of the 1000 Genomes Project data set revealed that human X-palindrome spacers are enriched for deletions relative to arms and flanking sequence, including a common spacer deletion that affects 13% of human X Chromosomes. This work reveals an abundance of conserved palindromes on primate X Chromosomes and suggests that protein-coding gene families in palindromes (most of which remain poorly characterized) promote X-palindrome survival in the face of ongoing structural instability.


Assuntos
Seleção Genética , Cromossomo X , Animais , Macaca mulatta/genética , Masculino , Pan troglodytes/genética , Cromossomos Sexuais , Cromossomo X/genética
8.
Genome Res ; 31(2): 198-210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33479023

RESUMO

Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.

9.
Genome Res ; 30(12): 1716-1726, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208454

RESUMO

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Assuntos
Análise de Sequência de DNA/veterinária , Cromossomo X/genética , Cromossomo Y/genética , Animais , Bovinos , Linhagem da Célula , Troca Genética , Evolução Molecular , Feminino , Amplificação de Genes , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Testículo/química
10.
G3 (Bethesda) ; 9(5): 1481-1486, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30837263

RESUMO

The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional , Transgenes , Animais , Sequência de Bases , Fibroblastos , Genes Reporter , Células Germinativas/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Nanoporos
11.
Nat Commun ; 9(1): 2945, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054462

RESUMO

Dynamic evolutionary processes and complex structure make the Y chromosome among the most diverse and least understood regions in mammalian genomes. Here, we present an annotated assembly of the male specific region of the horse Y chromosome (eMSY), representing the first comprehensive Y assembly in odd-toed ungulates. The eMSY comprises single-copy, equine specific multi-copy, PAR transposed, and novel ampliconic sequence classes. The eMSY gene density approaches that of autosomes with the highest number of retained X-Y gametologs recorded in eutherians, in addition to novel Y-born and transposed genes. Horse, donkey and mule testis RNAseq reveals several candidate genes for stallion fertility. A novel testis-expressed XY ampliconic sequence class, ETSTY7, is shared with the parasite Parascaris genome, providing evidence for eukaryotic horizontal transfer and inter-chromosomal mobility. Our study highlights the dynamic nature of the Y and provides a reference sequence for improved understanding of equine male development and fertility.


Assuntos
Evolução Molecular , Fertilidade/genética , Cavalos/genética , Cromossomo Y/genética , Animais , Ascaridoidea/genética , Equidae/genética , Dosagem de Genes/genética , Transferência Genética Horizontal , Hibridização Genética , Masculino , Filogenia , Testículo/metabolismo , Cromossomo X/genética
12.
Nat Protoc ; 13(4): 787-809, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565902

RESUMO

The reference sequences of structurally complex regions can be obtained only through highly accurate clone-based approaches. We and others have successfully used single-haplotype iterative mapping and sequencing (SHIMS) 1.0 to assemble structurally complex regions across the sex chromosomes of several vertebrate species and to allow for targeted improvements to the reference sequences of human autosomes. However, SHIMS 1.0 is expensive and time consuming, requiring resources that only a genome center can provide. Here we introduce SHIMS 2.0, an improved SHIMS protocol that allows even a small laboratory to generate high-quality reference sequence from complex genomic regions. Using a streamlined and parallelized library-preparation protocol, and taking advantage of inexpensive high-throughput short-read-sequencing technologies, a small laboratory with both molecular biology and bioinformatics experience can sequence and assemble 192 large-insert bacterial artificial chromosome (BAC) or fosmid clones in 1 week. In SHIMS 2.0, in contrast to other pooling strategies, each clone is sequenced with a unique barcode, thus enabling clones containing nearly identical sequences to be multiplexed in a single sequencing run and assembled separately. Relative to SHIMS 1.0, SHIMS 2.0 decreases the required cost and time by two orders of magnitude while preserving high sequencing accuracy.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos , DNA/química , DNA/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Animais , Biologia Computacional , Análise Custo-Benefício , Biblioteca Gênica , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Vertebrados
13.
Genome Res ; 28(4): 474-483, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449410

RESUMO

Mammalian X and Y Chromosomes evolved from an ordinary autosomal pair. Genetic decay of the Y led to X Chromosome inactivation (XCI) in females, but some Y-linked genes were retained during the course of sex chromosome evolution, and many X-linked genes did not become subject to XCI. We reconstructed gene-by-gene dosage sensitivities on the ancestral autosomes through phylogenetic analysis of microRNA (miRNA) target sites and compared these preexisting characteristics to the current status of Y-linked and X-linked genes in mammals. Preexisting heterogeneities in dosage sensitivity, manifesting as differences in the extent of miRNA-mediated repression, predicted either the retention of a Y homolog or the acquisition of XCI following Y gene decay. Analogous heterogeneities among avian Z-linked genes predicted either the retention of a W homolog or gene-specific dosage compensation following W gene decay. Genome-wide analyses of human copy number variation indicate that these heterogeneities consisted of sensitivity to both increases and decreases in dosage. We propose a model of XY/ZW evolution incorporating such preexisting dosage sensitivities in determining the evolutionary fates of individual genes. Our findings thus provide a more complete view of the role of dosage sensitivity in shaping the mammalian and avian sex chromosomes and reveal an important role for post-transcriptional regulatory sequences (miRNA target sites) in sex chromosome evolution.


Assuntos
Evolução Molecular , Dosagem de Genes/genética , MicroRNAs/genética , Inativação do Cromossomo X/genética , Animais , Galinhas/genética , Sequência Conservada/genética , Variações do Número de Cópias de DNA , Feminino , Regulação da Expressão Gênica , Genoma , Humanos , Masculino , Mamíferos , Filogenia , Cromossomo Y/genética
14.
Nat Genet ; 49(3): 387-394, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135246

RESUMO

After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line.


Assuntos
Aves/genética , Dosagem de Genes/genética , Mamíferos/genética , Fatores de Transcrição/genética , Cromossomo Y/genética , Animais , Evolução Molecular , Feminino , Humanos , Masculino , Processos de Determinação Sexual/genética , Cromossomo X/genética
15.
Elife ; 52016 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-27718356

RESUMO

The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.


Assuntos
Antígenos Nucleares/genética , Evolução Molecular , Células Germinativas/metabolismo , Reprodução/genética , Animais , Antígenos Nucleares/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Eucariotos/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Genômica , Células Germinativas/crescimento & desenvolvimento , Meiose/genética , Filogenia
16.
Nature ; 508(7497): 494-9, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24759411

RESUMO

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Assuntos
Evolução Molecular , Dosagem de Genes/genética , Mamíferos/genética , Cromossomo Y/genética , Animais , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Doença , Feminino , Regulação da Expressão Gênica , Saúde , Humanos , Masculino , Marsupiais/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Biossíntese de Proteínas/genética , Estabilidade Proteica , Seleção Genética/genética , Homologia de Sequência , Caracteres Sexuais , Espermatogênese/genética , Testículo/metabolismo , Transcrição Gênica/genética , Síndrome de Turner/genética , Cromossomo X/genética
17.
BMC Genomics ; 13: 183, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583744

RESUMO

BACKGROUND: The female-specific W chromosomes and male-specific Y chromosomes have proven difficult to assemble with whole-genome shotgun methods, creating a demand for new approaches to identify sequence contigs specific to these sex chromosomes. Here, we develop and apply a novel method for identifying sequences that are W-specific. RESULTS: Using the Illumina Genome Analyzer, we generated sequence reads from a male domestic chicken (ZZ) and mapped them to the existing female (ZW) genome sequence. This method allowed us to identify segments of the female genome that are underrepresented in the male genome and are therefore likely to be female specific. We developed a Bayesian classifier to automate the calling of W-linked contigs and successfully identified more than 60 novel W-specific sequences. CONCLUSIONS: Our classifier can be applied to improve heterogametic whole-genome shotgun assemblies of the W or Y chromosome of any organism. This study greatly improves our knowledge of the W chromosome and will enhance future studies of avian sex determination and sex chromosome evolution.


Assuntos
Galinhas/genética , Mapeamento de Sequências Contíguas/métodos , Análise de Sequência de DNA/métodos , Cromossomos Sexuais/genética , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase , Alinhamento de Sequência
18.
Nature ; 466(7306): 612-6, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20622855

RESUMO

In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.


Assuntos
Galinhas/genética , Cromossomos Humanos X/genética , Evolução Molecular , Genes/genética , Cromossomos Sexuais/genética , Animais , Feminino , Deleção de Genes , Genoma/genética , Humanos , Masculino , Família Multigênica/genética , Caracteres Sexuais , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...