Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1353154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516128

RESUMO

Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.

2.
BMC Cancer ; 23(1): 1194, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057796

RESUMO

BACKGROUND: Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS: In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS: MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS: In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.


Assuntos
Fibrossarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Animais , Adulto , Humanos , Embrião de Galinha , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958307

RESUMO

Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future. Although MFS patients have a lower risk of developing distant metastases compared with other STS cases, MFS is characterized by a high frequency of local recurrence. Notably, in 40-60% of the patients where the tumor recurs, it does so multiple times. Consequently, patients may undergo multiple local surgeries, removing the risk of potential amputation. Furthermore, because the tumor relapses generally have a higher grade, they exhibit a decreased response to radio and chemotherapy and an increased tendency to form metastases. Thus, a better understanding of MFS is required, and improved therapeutic options must be developed. Historically, preclinical models for other types of tumors have been instrumental in obtaining a better understanding of tumor development and in testing new therapeutic approaches. However, few MFS models are currently available. In this review, we will describe the MFS models available and will provide insights into the advantages and constraints of each model.

4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683035

RESUMO

The success of regenerative medicine in various clinical applications depends on the appropriate selection of the source of mesenchymal stem cells (MSCs). Indeed, the source conditions, the quality and quantity of MSCs, have an influence on the growth factors, cytokines, extracellular vesicles, and secrete bioactive factors of the regenerative milieu, thus influencing the clinical result. Thus, optimal source selection should harmonize this complex setting and ensure a well-personalized and effective treatment. Mesenchymal stem cells (MSCs) can be obtained from several sources, including bone marrow and adipose tissue, already used in orthopedic regenerative applications. In this sense, for bone, dental, and oral injuries, MSCs could provide an innovative and effective therapy. The present review aims to compare the properties (proliferation, migration, clonogenicity, angiogenic capacity, differentiation potential, and secretome) of MSCs derived from bone marrow, adipose tissue, and dental tissue to enable clinicians to select the best source of MSCs for their clinical application in bone and oral tissue regeneration to delineate new translational perspectives. A review of the literature was conducted using the search engines Web of Science, Pubmed, Scopus, and Google Scholar. An analysis of different publications showed that all sources compared (bone marrow mesenchymal stem cells (BM-MSCs), adipose tissue mesenchymal stem cells (AT-MSCs), and dental tissue mesenchymal stem cells (DT-MSCs)) are good options to promote proper migration and angiogenesis, and they turn out to be useful for gingival, dental pulp, bone, and periodontal regeneration. In particular, DT-MSCs have better proliferation rates and AT and G-MSC sources showed higher clonogenicity. MSCs from bone marrow, widely used in orthopedic regenerative medicine, are preferable for their differentiation ability. Considering all the properties among sources, BM-MSCs, AT-MSCs, and DT-MSCs present as potential candidates for oral and dental regeneration.


Assuntos
Células-Tronco Mesenquimais , Ortopedia , Tecido Adiposo , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Odontologia , Células-Tronco Mesenquimais/metabolismo
5.
J Exp Clin Cancer Res ; 39(1): 40, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087737

RESUMO

BACKGROUND: Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients' survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. METHODS: AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. RESULTS: MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. CONCLUSIONS: Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.


Assuntos
Neoplasias Ósseas/terapia , Indóis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Compostos Organometálicos/administração & dosagem , Osteossarcoma/terapia , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Indóis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/química , Camundongos , Nanopartículas , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Springerplus ; 5(1): 1427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625981

RESUMO

BACKGROUND: Human mesenchymal stem cells (MSC), during in vitro expansion, undergo a progressive loss of proliferative potential that leads to the senescent state, associated with a reduction of their "medicinal" properties. This may hampers their efficacy in the treatment of injured tissues. Quality controls on MSC-based cell therapy products should include an assessment of the senescent state. However, a reliable and specific marker is still missing. From studies on lamin-associated disorders, has emerged the correlation between defective lamin A maturation and cellular senescence. FINDINGS: Primary cultured hMSC lines (n = 3), were analyzed by immunostaining at different life-span stages for the accumulation of prelamin A, along with other markers of cellular senescence. During culture, cells at the last stage of their life span displayed evident signs of senescence consistent with the positivity of SA-ß-gal staining. We also observed a significant increase of prelamin A positive cells. Furthermore, we verified that the cells marked by prelamin A were also positive for p21(Waf1) while negative for Ki67. CONCLUSIONS: Overall data support that the detection of prelamin A identifies senescent MSC, providing an easy and reliable tool to be use alone or in combination with known senescence markers to screen MSC before their use in clinical applications.

7.
Cytotechnology ; 68(6): 2479-2490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27023795

RESUMO

Three-dimensional (3D) spheroids of mesenchymal stromal cells (MSC) have been demonstrated to improve a wide range of MSC features, such as multilineage potential, secretion of therapeutic factors, and resistance against hypoxic condition. Accordingly, they represent a promising tool in regenerative medicine for several biological and clinical applications. Many approaches have been proposed to generate MSC spheroids. They usually require specific generation systems, such as rotatory bioreactors or low-attachment plates, and each approach has its own disadvantages. Furthermore, an over-time analysis of morphological homogeneity and architectural stability of the spheroids generated is rarely provided. In this work we adapted the "pellet culture" method to obtain homogenous spheroids of MSC and maintain them in vitro for long term studies. We analysed their outer and inner structure over a 2-month period to provide morphological and architectural information regarding the spheroids generated. Quantitative and qualitative data were obtained using brightfield and confocal microscope imaging coupled to a computational analysis to estimate volume, sphericity, and jagging degree. In addition, histological evaluation was performed to more thoroughly assess the cellular composition and the internal architecture of the 3D spheroids. The results provided show that MSC spheroids generated with the proposed approach are homogeneous and stable, from both morphological and architectural points of view, for a period of at least 15 days, approximately between day 15 and day 30 after their generation. Accordingly, the approach proposed serves as a rapid, cost-effective, and efficient method to generate and maintain MSC spheroids using common entry-level laboratory equipment only.

8.
Cytotherapy ; 16(11): 1476-1485, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24950679

RESUMO

BACKGROUND AIMS: Multipotency is one of the hallmarks of mesenchymal stromal cells (MSCs). Given the widespread adoption of MSC-based clinical applications, the need for rapid and reliable methods to estimate MSC multipotency is demanding. Adipogenic potential is commonly evaluated by staining cell lipid droplets with oil red O. This cytochemical assay is performed at the terminal stage of adipogenic induction (21-28 days) and necessitates the destruction of the specimen. In this study, we investigated whether it is possible to assess MSC adipogenic differentiation in a more efficient, timely and non-destructive manner, while monitoring in vitro secretion of adiponectin, a hormone specifically secreted by adipose tissue. METHODS: A commercially available enzyme-linked immunosorbent assay kit was used to quantify adiponectin secreted in the culture medium of adipo-induced human bone marrow-derived MSCs. Oil red O staining was used as a reference method. RESULTS: Adiponectin is detectable after 10 days of induction at a median concentration of 5.13 ng/mL. The secretion of adiponectin steadily increases as adipogenesis proceeds. Adiponectin is undetectable when adipogenic induction is pharmacologically blocked, inefficient or when human MSCs are induced to differentiate toward the osteogenic lineage, proving the specificity of the assay. Furthermore, the results of adiponectin secretion strongly correlate with oil red O quantification at the end of induction treatment. CONCLUSIONS: Our results demonstrate that quantification of secreted adiponectin can be used as a reliable and robust method to evaluate adipogenic potential without destroying samples. This method provides a useful tool for quality control in the laboratory and in clinical applications of human MSCs.


Assuntos
Adipogenia/genética , Adiponectina/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/genética , Linhagem Celular , Linhagem da Célula/genética , Humanos , Técnicas In Vitro
9.
J Transl Med ; 12: 95, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24716831

RESUMO

BACKGROUND: In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL). METHODS: We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSCs, and molecular karyotyping using a comparative genomic hybridization (CGH) array. RESULTS: MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture. CONCLUSIONS: Our results demonstrated that the in vitro expansion of MSCs does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications.


Assuntos
Células da Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Osteossarcoma/patologia , Segurança , Adolescente , Adulto , Diferenciação Celular , Criança , Aberrações Cromossômicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Bone Joint Surg Am ; 95(12): 1101-7, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23783207

RESUMO

BACKGROUND: The clinical application of freshly isolated connective-tissue progenitors, as well as the potential preparation of culture-expanded mesenchymal stem cell populations for therapeutic applications, will benefit from clinical methods that maximize the yield of the starting population. We compared the number of cells, concentration, and prevalence of colony-founding connective-tissue progenitors from the anterior and posterior iliac crest. In addition, we compared the expansion kinetics and multilineage differentiation potential of their culture-expanded progeny when processed to form mesenchymal stem cells. METHODS: Marrow aspirate was collected from both the anterior and posterior iliac crest of twenty-two patients. The concentration and prevalence of colony-founding connective-tissue progenitors were estimated with use of a colony formation assay. The expansion kinetics and multilineage differentiation potential of the culture-expanded mesenchymal stem cell populations derived from these starting samples were compared. RESULTS: The yield of colony-founding connective-tissue progenitors was 1.6 times greater in the posterior compared with the anterior iliac crest. No differences were found with respect to the viability, phenotype, expansion kinetics, or multilineage differentiation potential of mesenchymal stem cell populations derived from these two sites. CONCLUSIONS: The concentration and yield of colony-founding connective-tissue progenitors were greater when aspirate was obtained from the posterior compared with the anterior iliac crest, whereas the biological potential of the cells derived from these sites appeared comparable. CLINICAL RELEVANCE: The harvesting of bone marrow from the posterior iliac crest appears to be preferred, as it provided a modestly higher concentration of colony-founding connective-tissue progenitors than comparable aspirate from the anterior iliac crest.


Assuntos
Ílio/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Coleta de Tecidos e Órgãos/métodos , Sítio Doador de Transplante , Adulto , Medula Óssea , Contagem de Células , Diferenciação Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...