Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35745694

RESUMO

To develop novel chemotherapeutic alternatives for the treatment of Chagas disease, in this study, a set of new amino naphthoquinone derivatives were synthesised and evaluated in vitro on the epimastigote and trypomastigote forms of Trypanosoma cruzi strains (NINOA and INC-5) and on J774 murine macrophages. The design of the new naphthoquinone derivatives considered the incorporation of nitrogenous fragments with different substitution patterns present in compounds with activity on T. cruzi, and, thus, 19 compounds were synthesised in a simple manner. Compounds 2e and 7j showed the lowest IC50 values (0.43 µM against both strains for 2e and 0.19 µM and 0.92 µM for 7j). Likewise, 7j was more potent than the reference drug, benznidazole, and was more selective on epimastigotes. To postulate a possible mechanism of action, molecular docking studies were performed on T. cruzi trypanothione reductase (TcTR), specifically at a site in the dimer interface, which is a binding site for this type of naphthoquinone. Interestingly, 7j was one of the compounds that showed the best interaction profile on the enzyme; therefore, 7j was evaluated on TR, which behaved as a non-competitive inhibitor. Finally, 7j was predicted to have a good pharmacokinetic profile for oral administration. Thus, the naphthoquinone nucleus should be considered in the search for new trypanocidal agents based on our hit 7j.

3.
Front Microbiol ; 8: 1669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912771

RESUMO

Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.

4.
Int J Antimicrob Agents ; 49(1): 88-92, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27939675

RESUMO

Acinetobacter baumannii is an emergent opportunistic bacterial pathogen responsible for recalcitrant infections owing to its high intrinsic tolerance to most antibiotics; therefore, suitable strategies to treat these infections are needed. One plausible approach is the repurposing of drugs that are already in use. Among them, anticancer drugs may be especially useful due their cytotoxic activities and ample similarities between bacterial infections and growing tumours. In this work, the effectiveness of four anticancer drugs on the growth of A. baumannii ATTC BAA-747 was evaluated, including the antimetabolite 5-fluorouracil and three DNA crosslinkers, namely cisplatin, mitomycin C (MMC) and merphalan. MMC was the most effective drug, having a minimum inhibitory concentration for 50% of growth in Luria-Bertani medium at ca. 7 µg/mL and completely inhibiting growth at 25 µg/mL. Hence, MMC was tested against a panel of 21 clinical isolates, including 18 multidrug-resistant (MDR) isolates, 3 of which were sensitive only to colistin. The minimum inhibitory concentrations and minimum bactericidal concentrations of MMC in all tested strains were found to be similar to those of A. baumannii ATCC BAA-747, and MMC also effectively killed stationary-phase, persister and biofilm cells. Moreover, MMC was able to increase survival of the insect larvae Galleria mellonella against an otherwise lethal A. baumannii infection from 0% to ≥53% for the antibiotic-sensitive A. baumannii ATCC BAA-747 strain and the MDR strains A560 and A578. Therefore, MMC is highly effective at killing the emergent opportunistic pathogen A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Mitomicina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Animais , Antibacterianos/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Cisplatino/farmacologia , Modelos Animais de Doenças , Fluoruracila/farmacologia , Larva/microbiologia , Lepidópteros/microbiologia , Melfalan/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/administração & dosagem , Análise de Sobrevida , Resultado do Tratamento
5.
FEBS J ; 283(19): 3637-3650, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521998

RESUMO

Mitochondrial aldehyde dehydrogenase (ALDH2) has been proposed as a key enzyme in cardioprotection during ischemia-reperfusion processes. This proposal led to the search for activators of ALDH2 with the aim to develop cardioprotective drugs. Alda-1 was the first activator of ALDH2 identified and its cardioprotective effect has been extensively proven in vivo; however, the mechanism of activation is not fully understood. A crystallographic study showed that Alda-1 binds to the entrance of the aldehyde-binding site; therefore, Alda-1 should in essence be an inhibitor. In the present study, kinetic experiments were performed to characterize the effect of Alda-1 on the properties of ALDH2 (kinetic parameters, determination of the rate-limiting step, reactivity of the catalytic cysteine) and on the kinetic mechanism (type of kinetics, sequence of substrates entering, and products release). The results showed that Alda-1 dramatically modifies the properties of ALDH2, the Km for NAD+ decreased by 2.4-fold, and the catalytic efficiency increased 4.4-fold; however, the Km for the aldehyde increased 8.6-fold, thus, diminishing the catalytic efficiency. The alterations in these parameters resulted in a complex behavior, where Alda-1 acts as inhibitor at low concentrations of aldehyde and as an activator at high concentrations. Additionally, the binding of Alda-1 to ALDH2 made the deacylation less limiting and diminished the pKa of the catalytic cysteine. Finally, NADH inhibition patterns indicated that Alda-1 induced a change in the sequence of substrates entry and products release, in agreement with the proposal of both substrates entering ALDH2 by the NAD+ entrance site.


Assuntos
Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Ativadores de Enzimas/farmacologia , Aldeído-Desidrogenase Mitocondrial/química , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas/química , Benzodioxóis/química , Cisteína/química , Ativadores de Enzimas/química , Cinética
6.
Proteins ; 83(1): 105-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354921

RESUMO

The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD(+) by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate-limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases.


Assuntos
Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Tamoxifeno/farmacologia , Família Aldeído Desidrogenase 1 , Antineoplásicos/química , Domínio Catalítico , Ativadores de Enzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , NAD/metabolismo , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Tamoxifeno/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...