Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 107(8): e201-e212, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944598

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies. Ectopic transplantation of human fetal ventral mesencephalic DA neurons into the striatum of PD patients have provided proof-of-principle for the cell replacement strategy in this disorder. However, 10 to 22 y after transplantation, 1% to 27% of grafted neurons contained α-syn aggregates similar to those observed in the host brain. We hypothesized that intrastriatal grafts are more vulnerable to α-syn propagation because the striatum is not the ontogenic site of nigral DA neurons and represents an unfavorable environment for transplanted neurons. Here, we compared the long-term host-to-graft propagation of α-syn in 2 transplantation sites: the SNpc and the striatum. METHODS: Two mouse models of PD were developed by injecting adeno-associated-virus2/9-human α-syn A53T into either the SNpc or the striatum of C57BL/6 mice. Mouse fetal ventral mesencephalic DA progenitors were grafted into the SNpc or into the striatum of SNpc or striatum of α-syn injected mice, respectively. RESULTS: First, we have shown a degeneration of the nigrostriatal pathway associated with motor deficits after nigral but not striatal adeno-associated-virus-hαsyn A53T injection. Second, human α-syn preferentially accumulates in striatal grafts compared to nigral grafts. However, no differences were observed for phosphorylated α-syn, a marker of pathological α-syn aggregates. CONCLUSIONS: Taken together, our results suggest that the ectopic site of the transplantation impacts the host-to-graft transmission of α-syn.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/cirurgia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Camundongos Endogâmicos C57BL , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo
2.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626637

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). One strategy for treating PD is transplantation of DA neuroblasts. Significant advances have been made in generating midbrain DA neurons from human pluripotent stem cells. Before these cells can be routinely used in clinical trials, extensive preclinical safety studies are required. One of the main issues to be addressed is the long-term therapeutic effectiveness of these cells. In most transplantation studies using human cells, the maturation of DA neurons has been analyzed over a relatively short period not exceeding 6 months. In present study, we generated midbrain DA neurons from human induced pluripotent stem cells (hiPSCs) and grafted these neurons into the SNpc in an animal model of PD. Graft survival and maturation were analyzed from 1 to 12 months post-transplantation (mpt). We observed long-term survival and functionality of the grafted neurons. However, at 12 mpt, we observed a decrease in the proportion of SNpc DA neuron subtype compared with that at 6 mpt. In addition, at 12 mpt, grafts still contained immature neurons. Our results suggest that longer-term evaluation of the maturation of neurons derived from human stem cells is mandatory for the safe application of cell therapy for PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Mesencéfalo , Camundongos , Doença de Parkinson/terapia
3.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406755

RESUMO

Intrastriatal embryonic ventral mesencephalon grafts have been shown to integrate, survive, and reinnervate the host striatum in clinical settings and in animal models of Parkinson's disease. However, this ectopic location does not restore the physiological loops of the nigrostriatal pathway and promotes only moderate behavioral benefits. Here, we performed a direct comparison of the potential benefits of intranigral versus intrastriatal grafts in animal models of Parkinson's disease. We report that intranigral grafts promoted better survival of dopaminergic neurons and that only intranigral grafts induced recovery of fine motor skills and normalized cortico-striatal responses. The increase in the number of toxic activated glial cells in host tissue surrounding the intrastriatal graft, as well as within the graft, may be one of the causes of the increased cell death observed in the intrastriatal graft. Homotopic localization of the graft and the subsequent physiological cell rewiring of the basal ganglia may be a key factor in successful and beneficial cell transplantation procedures.


Assuntos
Transplante de Tecido Encefálico , Doença de Parkinson , Animais , Transplante de Tecido Encefálico/métodos , Transplante de Células , Transplante de Tecido Fetal/métodos , Mesencéfalo , Oxidopamina , Doença de Parkinson/terapia , Substância Negra
4.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217751

RESUMO

The overall bauplan of the tetrapod brain is highly conserved, yet significant variations exist among species in terms of brain size, structural composition and cellular diversity. Understanding processes underlying neural and behavioral development in a wide range of species is important both from an evolutionary developmental perspective as well as for the identification of cell sources with post-developmental neurogenic potential. Here, we characterize germinal processes in the brain of Notophthalmus viridescens and Pleurodeles waltl during both development and adulthood. Using a combination of cell tracking tools, including clonal analyses in new transgenic salamander lines, we examine the origin of neural stem and progenitor cells found in the adult brain, determine regional variability in cell cycle length of progenitor cells, and show spatiotemporally orchestrated neurogenesis. We analyze how maturation of different brain regions and neuronal subpopulations are linked to the acquisition of complex behaviors, and how these behaviors are altered upon chemical ablation of dopamine neurons. Our data analyzed from an evolutionary perspective reveal both common and species-specific processes in tetrapod brain formation and function.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/embriologia , Neurogênese/fisiologia , Notophthalmus/embriologia , Células-Tronco/metabolismo , Animais , Encéfalo/citologia , Pleurodeles , Células-Tronco/citologia
5.
Sci Rep ; 6: 37615, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886228

RESUMO

Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers' ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers.


Assuntos
Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiologia , Estresse Fisiológico , Animais , Dendritos/metabolismo , Feminino , Masculino , Comportamento Materno , Memória , Camundongos Endogâmicos C57BL , Neurogênese , Odorantes , Gravidez
6.
Sci Rep ; 6: 26448, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246266

RESUMO

Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis.

7.
Elife ; 42015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26485032

RESUMO

Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate.


Assuntos
Encéfalo/fisiologia , Exposição Ambiental , Neurogênese/efeitos dos fármacos , Oxigênio , Pressão Parcial , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Salamandridae
8.
PLoS One ; 8(8): e72972, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009723

RESUMO

The dentate gyrus (DG) and the olfactory bulb (OB) are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring. We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis.


Assuntos
Hipocampo/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Estresse Fisiológico , Animais , Feminino , Idade Gestacional , Memória de Curto Prazo , Camundongos , Odorantes , Percepção Olfatória , Gravidez
9.
Development ; 140(12): 2548-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23715548

RESUMO

It was long thought that no new neurons are added to the adult brain. Similarly, neurotransmitter signaling was primarily associated with communication between differentiated neurons. Both of these ideas have been challenged, and a crosstalk between neurogenesis and neurotransmitter signaling is beginning to emerge. In this Review, we discuss neurotransmitter signaling as it functions at the intersection of stem cell research and regenerative medicine, exploring how it may regulate the formation of new functional neurons and outlining interactions with other signaling pathways. We consider evolutionary and cross-species comparative aspects, and integrate available results in the context of normal physiological versus pathological conditions. We also discuss the potential role of neurotransmitters in brain size regulation and implications for cell replacement therapies.


Assuntos
Encéfalo/metabolismo , Neurogênese , Transmissão Sináptica , Vertebrados/metabolismo , Animais , Evolução Biológica , Encéfalo/citologia , Encéfalo/fisiologia , Proliferação de Células , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuropeptídeo Y/metabolismo , Óxido Nítrico/metabolismo , Tamanho do Órgão , Receptores de GABA-A/metabolismo , Regeneração , Vertebrados/fisiologia
10.
J Neurosci ; 32(22): 7758-65, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649253

RESUMO

Abuse during early life, especially from the caregiver, increases vulnerability to develop later-life psychopathologies such as depression. Although signs of depression are typically not expressed until later life, signs of dysfunctional social behavior have been found earlier. How infant abuse alters the trajectory of brain development to produce pathways to pathology is not completely understood. Here we address this question using two different but complementary rat models of early-life abuse from postnatal day 8 (P8) to P12: a naturalistic paradigm, where the mother is provided with insufficient bedding for nest building; and a more controlled paradigm, where infants undergo olfactory classical conditioning. Amygdala neural assessment (c-Fos), as well as social behavior and forced swim tests were performed at preweaning (P20) and adolescence (P45). Our results show that both models of early-life abuse induce deficits in social behavior, even during the preweaning period; however, depressive-like behaviors were observed only during adolescence. Adolescent depressive-like behavior corresponds with an increase in amygdala neural activity in response to forced swim test. A causal relationship between the amygdala and depressive-like behavior was suggested through amygdala temporary deactivation (muscimol infusions), which rescued the depressive-like behavior in the forced swim test. Our results indicate that social behavior deficits in infancy could serve as an early marker for later psychopathology. Moreover, the implication of the amygdala in the ontogeny of depressive-like behaviors in infant abused animals is an important step toward understanding the underlying mechanisms of later-life mental disease associated with early-life abuse.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Depressivo/etiologia , Deficiências do Desenvolvimento/etiologia , Transtornos do Comportamento Social/complicações , Transtornos do Comportamento Social/patologia , Adolescente , Fatores Etários , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Comportamento Materno/psicologia , Privação Materna , Muscimol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Condutos Olfatórios/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Isolamento Social/psicologia , Natação/psicologia , Vocalização Animal/fisiologia
11.
Hippocampus ; 22(2): 292-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21049483

RESUMO

New neurons are continuously produced in the adult dentate gyrus of the hippocampus. It has been shown that one of the functions of adult neurogenesis is to support spatial pattern separation, a process that transforms similar memories into nonoverlapping representations. This prompted us to investigate whether adult-born neurons are required for discriminating two contexts, i.e., for identifying a familiar environment and detect any changes introduced in it. We show that depleting adult-born neurons impairs the animal's ability to disambiguate two contexts after extensive training. These data suggest that the continuous production of new dentate neurons plays a crucial role in extracting and separating efficiently contextual representation in order to discriminate features within events.


Assuntos
Giro Denteado/citologia , Giro Denteado/fisiologia , Discriminação Psicológica/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Neurosci ; 31(3): 1010-6, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21248125

RESUMO

In the mammalian brain, the dentate gyrus and the olfactory bulb are regions where new neurons are continuously added. While the functional consequences of continuous hippocampal neurogenesis have been extensively studied, the role of olfactory adult-born neurons remains elusive. In particular, the involvement of these newborn neurons in odor processing is still a matter of debate. We demonstrate a critical impact of both the age of new neurons and the memory processes involved (learning vs recall) in the recruitment of newborn cells. Thus, odor stimulation preferentially recruited immature neurons over more mature ones (2 weeks old vs 5 and 9 weeks old), whereas associative learning based on odor discrimination preferentially recruited mature neurons (5-9 weeks old). Furthermore, while mature neurons were activated by this associative learning, they were not activated by long-term memory recall, indicating that the contribution of newborn neurons in olfactory functions depends also on the memory process involved. Our data thus show that newborn neurons are indeed involved in odor processing and that their recruitment is age- and memory process-dependent.


Assuntos
Aprendizagem por Discriminação/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Análise de Variância , Animais , Imuno-Histoquímica , Masculino , Memória de Longo Prazo/fisiologia , Camundongos , Odorantes , Proteínas Proto-Oncogênicas c-fos/metabolismo , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...