Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Eur J Immunol ; : e2350977, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210647

RESUMO

Lymphotoxin α and lymphotoxin ß (LTs), TNF superfamily members, are expressed in either soluble (LTα3) or membrane-bound (LTα1ß2 or LTα2ß1) forms. In the pathological context, LT-mediated signaling is known to exacerbate autoimmunity by perpetuating inflammation and promoting the formation of tertiary lymphoid organs. Despite this understanding, the exact roles of LTα and LTß in the pathogenesis of the murine model of multiple sclerosis, and experimental autoimmune encephalomyelitis (EAE), remain controversial. Here, we employed a panel of gene-modified mice with cell-type restricted ablation of LTα (targeting both membrane-bound and soluble forms of LTs) to unravel the contributions of LTs from various lymphoid cells, namely T cells, type 3 innate lymphoid cells (ILC3) and B cells, in EAE. We found that the effects of LTα deletion were dependent on the cellular source. ILC3-derived lymphotoxins exerted a protective role in EAE by regulating the accumulation of IFN-É£- and GM-CSF-producing TH cells in the CNS. In contrast, T-cell-derived lymphotoxins promoted IL-17A- and GM-CSF-mediated TH responses in the periphery, whereas B-cell-derived lymphotoxins were pathogenic only in the autoantibody-mediated EAE model. Collectively, our findings unveil the multifaceted involvement of lymphotoxins in EAE pathogenesis and challenge the view that lymphotoxins play a solely pathogenic role in neuroinflammation.

2.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201358

RESUMO

Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.


Assuntos
Evolução Molecular , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina , Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Animais , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Processamento de Proteína Pós-Traducional , Filogenia
3.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125954

RESUMO

In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.


Assuntos
Citocinas , Camundongos Endogâmicos ICR , Peptídeos , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Animais , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Camundongos , Masculino , Citocinas/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
4.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195046, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876159

RESUMO

shRNA-mediated strategy of miRNA overexpression based on RNA Polymerase III (Pol III) expression cassettes is widely used for miRNA functional studies. For some miRNAs, e.g., encoded in the genome as a part of a polycistronic miRNA cluster, it is most likely the only way for their individual stable overexpression. Here we have revealed that expression of miRNAs longer than 19 nt (e.g. 23 nt in length hsa-miR-93-5p) using such approach could be accompanied by undesired predominant generation of 5' end miRNA isoforms (5'-isomiRs). Extra U residues (up to five) added by Pol III at the 3' end of the transcribed shRNA during transcription termination could cause a shift in the Dicer cleavage position of the shRNA. This results in the formation of 5'-isomiRs, which have a significantly altered seed region compared to the initially encoded canonical hsa-miR-93-5p. We demonstrated that the commonly used qPCR method is insensitive to the formation of 5'-isomiRs and cannot be used to confirm miRNA overexpression. However, the predominant expression of 5'-isomiRs without three or four first nucleotides instead of the canonical isoform could be disclosed based on miRNA-Seq analysis. Moreover, mRNA sequencing data showed that the 5'-isomiRs of hsa-miR-93-5p presumably regulate their own mRNA targets. Thus, omitting miRNA-Seq analysis may lead to erroneous conclusions regarding revealed mRNA targets and possible molecular mechanisms in which studied miRNA is involved. Overall, the presented results show that structures of shRNAs for stable overexpression of miRNAs requires careful design to avoid generation of undesired 5'-isomiRs.


Assuntos
MicroRNAs , RNA Interferente Pequeno , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/genética , RNA Polimerase III/metabolismo , RNA Polimerase III/genética , Células HEK293 , Isoformas de RNA/genética , Isoformas de RNA/metabolismo
5.
Biochimie ; 225: 1-9, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703943

RESUMO

Inhibition of autophagy is one of the hallmarks of the SARS-CoV-2 infection. Recently it was reported that SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes via interaction with VPS39 thus preventing binding of homotypic fusion and protein sorting (HOPS) complex to RAB7 GTPase. Here we report that myelin basic protein (MBP), a major structural component of the myelin sheath, binds ORF3a and is colocalized with it in mammalian cells. Co-expression of MBP with ORF3a restores autophagy in mammalian cells, inhibited by viral protein. Our data suggest that basic charge of MBP drives suppression of ORF3a-induced autophagy inhibition as its deaminated variants lost ability to bind ORF3a and counteract autophagy blockade. These results together with our recent findings, indicating that MBP interacts with structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3) and Sec1/Munc18-1 family members, may suggest protective role of the MBP in terms of the maintaining of protein traffic and autophagosome-lysosome fusion machinery in oligodendrocytes during SARS-CoV-2 infection. Finally, our data may indicate that deimination of MBP observed in the patients with multiple sclerosis (MS) may contribute to the previously reported worser outcomes of COVID-19 and increase of post-COVID-19 neurologic symptoms in patients with MS.


Assuntos
Autofagia , Proteína Básica da Mielina , SARS-CoV-2 , Proteínas Viroporinas , Animais , Humanos , Autofagossomos/metabolismo , Chlorocebus aethiops , COVID-19/metabolismo , COVID-19/virologia , Células HEK293 , Proteína Básica da Mielina/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , Proteínas Viroporinas/antagonistas & inibidores , Proteínas Viroporinas/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473856

RESUMO

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Assuntos
Furina , Glicoproteínas de Membrana , Animais , Furina/metabolismo , Proteína Básica da Mielina , Proteínas de Membrana/metabolismo , Peptídeos , Mamíferos/metabolismo
7.
Front Pharmacol ; 15: 1351655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449806

RESUMO

Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1ß/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/ß, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.

8.
Acta Neurochir Suppl ; 135: 375-383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153496

RESUMO

Thoracic herniated disks are relatively rare. They account for approximately 2% of all intervertebral herniated disks in large series. Traditional surgery via laminectomy has frequently yielded disappointing results, although the recent literature reports that anterior calcified thoracic herniation was successfully treated with this approach. This issue has encouraged a search for alternatives, such as anterolateral, lateral, and posterolateral approaches to the thoracic spine. From January 2009 to December 2019, we selected 66 patients harboring a symptomatic median-paramedian herniated disk at the level of the thoracic spine, treated at the authors' institutions. The present experience would give further support to the use of costotrasversectomy, along with its "mini-invasive" modifications, as a suitable and safe approach for thoracic disk disease. Although we must admit that endoscopy is likely to become the gold standard of surgical method in the future and that the anterior approach with mini-toracotomy without rib removal will become popular, the future scenario could certainly reserve an important place for the approach we have used in the surgical management of this challenging spinal pathology, mainly because of the approach's versatility and short learning curve.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Humanos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/cirurgia , Laminectomia , Coluna Vertebral , Curva de Aprendizado
9.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298160

RESUMO

Neutrophil Extracellular Traps (NETs) have been implicated in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) pathogenesis. The myeloperoxidase-deoxyribonucleic acid (MPO-DNA) complex and nucleosomes are serum markers of NETosis. The aim of this study was to assess these NETosis parameters as markers for SLE and APS diagnosis and their association with clinical features and disease activity. A total of 138 people were included in the cross-sectional study: 30 with SLE without APS, 47 with SLE and APS, 41 patients with primary antiphospholipid syndrome (PAPS), and 20 seemingly healthy individuals. Serum MPO-DNA complex and nucleosome levels were determined via an enzyme-linked immunosorbent assay (ELISA). Informed consent was obtained from all subjects involved in the study. The Ethics Committee of the V.A. Nasonova Research Institute of Rheumatology (Protocol No. 25 dated 23 December 2021) approved the study. In patients with SLE without APS, the levels of the MPO-DNA complex were significantly higher compared to patients with SLE with APS, with PAPS, and healthy controls (p < 0.0001). Among patients with a reliable diagnosis of SLE, 30 had positive values of the MPO-DNA complex, of whom 18 had SLE without APS, and 12 had SLE with APS. Patients with SLE and positive MPO-DNA complex levels were significantly more likely to have high SLE activity (χ2 = 5.25, p = 0.037), lupus glomerulonephritis (χ2 = 6.82, p = 0.009), positive antibodies to dsDNA (χ2 = 4.82, p = 0.036), and hypocomplementemia (χ2 = 6.72, p = 0.01). Elevated MPO-DNA levels were observed in 22 patients with APS: 12 with SLE with APS and 10 with PAPS. There were no significant associations between positive levels of the MPO-DNA complex and clinical and laboratory manifestations of APS. The concentration of nucleosomes was significantly lower in the group of SLE patients (±APS) compared to controls and PAPS (p < 0.0001). In SLE patients, the frequency of low nucleosome levels was associated with high SLE activity (χ2 = 13.4, p < 0.0001), lupus nephritis (χ2 = 4.1, p = 0.043), and arthritis (χ2 = 3.89, p = 0.048). An increase in the specific marker of NETosis, the MPO-DNA complex, was found in the blood serum of SLE patients without APS. Elevated levels of the MPO-DNA complex can be regarded as a promising biomarker of lupus nephritis, disease activity, and immunological disorders in SLE patients. Lower levels of nucleosomes were significantly associated with SLE (±APS). Low nucleosome levels were more common in patients with high SLE activity, lupus nephritis, and arthritis.


Assuntos
Síndrome Antifosfolipídica , Artrite , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nucleossomos , Estudos Transversais , Artrite/complicações , DNA , Biomarcadores
10.
Cells ; 12(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980286

RESUMO

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Assuntos
Biotina , Proteína Básica da Mielina , Proteômica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas , Proteômica/métodos , Mapas de Interação de Proteínas
11.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768413

RESUMO

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Assuntos
Esclerose Múltipla , Proteína Básica da Mielina , Animais , Humanos , Proteína Básica da Mielina/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligantes , Fragmentos de Peptídeos , Peptídeos/química , Esclerose Múltipla/genética , Epitopos Imunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
12.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672249

RESUMO

Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/metabolismo , Apresentação de Antígeno , Autoantígenos/metabolismo
13.
Biochemistry (Mosc) ; 88(12): 2063-2072, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462450

RESUMO

Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Ubiquitina/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ubiquitinação , Reparo do DNA , Dano ao DNA
14.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304104

RESUMO

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

15.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343224

RESUMO

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Neoplasias/metabolismo , Antígenos de Neoplasias
16.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289607

RESUMO

Traumatic injury of the spinal cord is still one of the most challenging problems in the neurosurgical practice. Despite a long history of implementation of translational medicine in the field of spinal cord injury (SCI), it remains one of the most frequent causes of human disability and a critical situation for world healthcare systems. Here, we used our rat model of the of unilateral controlled SCI induced by a cryoinjury, which consistently reproduces glial scarring and posttraumatic cyst formation, and specifically evaluated histological, bioimaging and cytokine data. We propose a 10-grade scoring scale, which can objectively estimate the extent of damage of the experimental SCI according to the magnetic resonance imaging (MRI) results. It provides a homogeneous and reliable visual control of the dynamics of the posttraumatic processes, which makes it possible to clearly distinguish the extent of early damage, the formation of glial scars and the development of posttraumatic syringomyelic cysts. The concentration of cytokines and chemokines in the plasma following the experimental SCI increased up to two orders of magnitude in comparison with intact animals, suggesting that a traumatic injury of the spinal cord was accompanied by a remarkable cytokine storm. Our data suggested that the levels of IL-1α, IL-1ß, TNFα, GRO/KC, G-CSF, IFNγ and IL-13 may be considered as a reliable prognostic index for SCI. Finally, we demonstrated that MRI together with plasma cytokines level directly correlated and reliably predicted the clinical outcome following SCI. The present study brings novel noninvasive and intravital methods for the evaluation of the therapeutic efficacy of SCI treatment protocols, which may be easily translated into the clinical practice.

17.
Dis Markers ; 2022: 7243146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267463

RESUMO

As a multifunctional protein posttranslational modification enzyme in eukaryotic cells, Poly-ADP-ribose polymerase (PARP) acts as a DNA damage sensor, which helps to repair DNA damage through recruiting repair proteins to the DNA break sites. PARP inhibitors offer a significant clinical benefit for ovarian cancer with BRCA1/2 mutations. However, the majority of ovarian cancer patients harbor wild-type (WT) BRCA1/2 status, which narrows its clinical application. Here, we identified a small compound, SN-38, a CPT analog, which sensitizes BRCA-proficient ovarian cancer cells to PARP inhibitor treatment by inhibiting homologous recombination (HR) repair. SN-38 treatment greatly enhanced PARP inhibitor olaparib induced DNA double-strand breaks (DSBs) and DNA replication stress. Meanwhile, the combination of SN-38 and olaparib synergistically induced apoptosis in ovarian cancer. Furthermore, combination administration of SN-38 and olaparib induced synergistic antitumor efficacy in an ovarian cancer xenograft model in vivo. Therefore, our study provides a novel therapeutic strategy to optimize PARP inhibitor therapy for patients with BRCA-proficient ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação , Irinotecano/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário , Antineoplásicos/uso terapêutico , Adenosina Difosfato Ribose/uso terapêutico , DNA
18.
Front Immunol ; 13: 803229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052064

RESUMO

Background: B lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS. Methods: We performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs. Results: The tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors. Conclusions: Impaired maturation of regulatory B cells is associated with MS progression.


Assuntos
Linfócitos B Reguladores , Esclerose Múltipla , Humanos , Interleucina-10 , Estudos Prospectivos , Receptores de Antígenos de Linfócitos B
19.
Front Pharmacol ; 13: 1111340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36642990

RESUMO

To simulate acute lung injury (ALI) in SD male rats they we administered intratracheally with lipopolysaccharide (LPS) followed by hyperventilation of the lungs (HVL), which lead to functional changes in the respiratory system and an increase in the blood serum concentration of inflammatory cytokines. LPS + HVL after 4 h lead to pronounced histological signs of lung damage. We have studied the effectiveness of Derinat® when administered intramuscularly at dose of 7.5 mg/kg for 8 days in the ALI model. Derinat® administration lead to an increase in the concentration of most of the studied cytokines in a day. In the ALI model the administration of Derinat® returned the concentration of cytokines to its original values already 48 h after LPS + HVL, and also normalized the parameters of pulmonary respiration in comparison with animals without treatment. By the eighth day after LPS + HVL, respiratory parameters and cytokine levels, as well as biochemical and hematological parameters did not differ between groups, while histological signs of residual effects of lung damage were found in all animals, and were more pronounced in Derinat® group, which may indicate stimulation of the local immune response. Thus, the administration of Derinat® stimulates the immune response, has a pronounced protective effect against cytokinemia and respiratory failure caused by ALI, has immunomodulatory effect, and also stimulates a local immune response in lung tissues. Thus, Derinat® is a promising treatment for ALI.

20.
Biomolecules ; 11(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827627

RESUMO

Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.


Assuntos
Proteína Básica da Mielina , Regulação da Expressão Gênica , Humanos , Bainha de Mielina , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA