Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984761

RESUMO

AIMS: In patients with rheumatoid arthritis (RA), interleukin (IL)-6 affects the activity of cytochrome P450 (CYP) enzymes. Treatment with anti-IL-6 therapy can reverse the IL-6-mediated downregulation of CYP enzymes, resulting in changes in plasma levels of CYP substrates. The primary objective of this study was to evaluate the impact of the IL-6 inhibitor olokizumab on the pharmacokinetics of CYP probe substrates in subjects with active RA. METHODS: Seventeen patients with active RA were orally administered a phenotyping cocktail of midazolam (CYP3A4 substrate), omeprazole (CYP2C19 substrate), warfarin (CYP2C9 substrate) and caffeine (CYP1A2 substrate) alone and 2 weeks after a single subcutaneous injection of 128 mg olokizumab. The pharmacokinetic parameters of each substrate were calculated using noncompartmental analysis. RESULTS: Sixteen of 17 enrolled patients received the complete doses of the cocktail drugs and olokizumab and were eligible for the pharmacokinetic evaluations. After single-dose administration of olokizumab, the exposure of midazolam and omeprazole decreased by 30-33% and 26-32%, respectively, compared to when the substrates were administered along via cocktail. In the presence of olokizumab, caffeine exposure increased by 19-23% compared to caffeine administration alone. There were no significant changes in S-warfarin exposure. CONCLUSION: In patients with active RA, olokizumab potentially reverses the IL-6-mediated suppression of CYP3A4 and CYP2C19. According to FDA guidance, olokizumab is considered a weak inducer of CYP3A4 and CYP2C19.

2.
Viruses ; 14(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632781

RESUMO

Adeno-associated viruses (AAVs) are a convenient tool for gene therapy delivery. According to the current classification, they are divided into the species AAV A and AAV B within the genus Dependoparvovirus. Historically AAVs were also subdivided on the intraspecies level into 13 serotypes, which differ in tissue tropism and targeted gene delivery capacity. Serotype, however, is not a universal taxonomic category, and their assignment is not always robust. Cross-reactivity has been shown, indicating that classification could not rely on the results of serological tests alone. Moreover, since the isolation of AAV4, all subsequent AAVs were subdivided into serotypes based primarily on genetic differences and phylogenetic reconstructions. An increased interest in the use of AAV as a gene delivery tool justifies the need to improve the existing classification. Here, we suggest genotype-based AAV classification below the species level based on the rep gene. A robust threshold was established as 10% nt differences within the 1248 nt genome fragment, with 4 distinct AAV genotypes identified. This distinct sub-species structure is maintained by ubiquitous recombination within, but not between, rep genes of the suggested genotypes.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Genótipo , Filogenia , Recombinação Genética
3.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664585

RESUMO

Rheumatoid arthritis (RA) is the most common inflammatory arthropathy worldwide. Possible manifestations of RA can be represented by a wide variability of symptoms, clinical forms, and course options. This multifactorial disease is triggered by a genetic predisposition and environmental factors. Both clinical and genealogical studies have demonstrated disease case accumulation in families. Revealing the impact of candidate gene missense variants on the disease course elucidates understanding of RA molecular pathogenesis. A multivariate genomewide association study (GWAS) based analysis identified the genes and signalling pathways involved in the pathogenesis of the disease. However, these identified RA candidate gene variants only explain 30% of familial disease cases. The genetic causes for a significant proportion of familial RA have not been determined until now. Therefore, it is important to identify RA risk groups in different populations, as well as the possible prognostic value of some genetic variants for disease development, progression, and treatment. Our review has two purposes. First, to summarise the data on RA candidate genes and the increased disease risk associated with these alleles in various populations. Second, to describe how the genetic variants can be used in the selection of drugs for the treatment of RA.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/genética , Polimorfismo Genético , Alelos , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Citocinas/genética , Progressão da Doença , Resistência a Medicamentos , Feminino , Genes MHC Classe I , Genes MHC da Classe II , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Prognóstico , Receptores de Citocinas/genética , Risco , Transdução de Sinais/genética
4.
Biomedicines ; 8(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936504

RESUMO

Rheumatoid arthritis (RA) is a systemic inflammatory joint disease affecting about 1% of the population worldwide. Current treatment approaches do not ensure a cure for every patient. Moreover, classical regimens are based on nontargeted systemic immune suppression and have significant side effects. Biological treatment has advanced considerably but efficacy and specificity issues remain. Gene therapy is one of the potential future directions for RA therapy, which is rapidly developing. Several gene therapy trials done so far have been of moderate success, but experimental and genetics studies have yielded novel targets. As a result, the arsenal of gene therapy tools keeps growing. Currently, both viral and nonviral delivery systems are used for RA therapy. Herein, we review recent approaches for RA gene therapy.

5.
Front Genet ; 10: 570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258550

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world's population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...