Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498920

RESUMO

The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.


Assuntos
Aves Domésticas , Salmonella , Animais , Humanos , Salmonella/genética , Virulência/genética , Especificidade de Hospedeiro , Enterobacteriaceae , Mamíferos
2.
Toxins (Basel) ; 13(5)2021 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065665

RESUMO

Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.


Assuntos
Toxinas de Bacillus thuringiensis/administração & dosagem , Bacillus thuringiensis/patogenicidade , Agentes de Controle Biológico/administração & dosagem , Animais , Toxinas de Bacillus thuringiensis/toxicidade , Agentes de Controle Biológico/toxicidade , Ecossistema , Humanos , Inseticidas/administração & dosagem , Inseticidas/toxicidade , Controle Biológico de Vetores/métodos , Fenótipo
3.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668147

RESUMO

Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is not indicative of Bt strains' phenotypes, neither it reflects actual phylogenetic relationships within the species. In this respect, comparative genomic and proteomic techniques appear more informative, but their use in Bt strain classification remains limited. In the present work, we used a bottom-up proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification to assess which stage of Bt culture, vegetative or spore, would be more informative for strain characterization. To this end, the proteomic differences for the israelensis-attributed strains were assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis strain were also compared to the spores of strains belonging to two other major Bt serovars, namely darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the respective genes in the 104 Bt genome assemblies available at open access with serovar attributions specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at 67% identity threshold, including several virulence factors. Notable, individual phylogenies of these core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn, the distribution of accessory protein genes was not confined to the existing serovars. The obtained results indicate that neither gene presence nor the core gene sequence may serve as distinctive bases for the serovar attribution, undermining the notion that the serotyping system reflects strains' phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics data plausibly and thus may serve for draft phylogeny estimation of the novel strains.


Assuntos
Bacillus thuringiensis/classificação , Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Proteoma/metabolismo , Sorotipagem/métodos , Fatores de Virulência/metabolismo , Virulência , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/genética , Cromatografia Líquida , Flagelina/genética , Filogenia , Proteoma/análise , Espectrometria de Massas em Tandem , Fatores de Virulência/genética
4.
PLoS Biol ; 18(7): e3000564, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32701952

RESUMO

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Assuntos
Amiloide/metabolismo , Pisum sativum/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Amiloide/ultraestrutura , Detergentes/farmacologia , Escherichia coli/metabolismo , Íons , Pancreatina/metabolismo , Pisum sativum/efeitos dos fármacos , Pepsina A/metabolismo , Agregados Proteicos , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/farmacologia , Proteínas de Armazenamento de Sementes/ultraestrutura
5.
Biomolecules ; 9(11)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690032

RESUMO

Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have ß-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are ß-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/metabolismo , Rhizobium leguminosarum/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Proteínas Amiloidogênicas/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Plantas/microbiologia , Rhizobium leguminosarum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...