Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(20): 13847-13854, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970424

RESUMO

Drug discovery usually begins with a high-throughput screen (HTS) of thousands to millions of molecules to identify starting points for medicinal chemistry. Conventional HTS platforms require expensive reagents and typically have complex assay formats. HTS platforms based on radioactivity are expensive, both in terms of reagent cost and disposal. Furthermore, nonspecific interferences common to these technologies result in an extensive attrition of hits during validation experiments. Mass spectrometry (MS) is a highly selective, label-free technology that can quantify multiple analytes in a single experiment. However, most commercial MS platforms typically involve a separation or cleanup prior to analysis and are too slow for large-scale screening campaigns. Recently, an MS platform (AMI-MS) was introduced that uses acoustically generated droplets to deliver analyte molecules directly from microtiter plates into the mass spectrometer at subsecond per well sampling rates. Here, we demonstrate the application of AMI-MS by developing an HTS-compatible assay that measures the inhibition of histone acetyltransferase activity. Real-time kinetic measurements from a single well were used to determine enzyme Km and Vmax values. We compare the AMI-MS readout with conventional platforms in single-shot screening and multipoint profiling modes. The AMI-MS assay identified 86% of hits previously identified, with a pIC50 ≥ 5.0, in a scintillation proximity assay (SPA) HTS at a lower hit rate and with a significantly reduced cost per well compared to the SPA-based readout. Furthermore, pIC50s, as measured by AMI-MS, showed a good correlation with values generated by RapidFire-MS. AMI-MS has the potential to provide significant improvements to high-throughput bioassays.


Assuntos
Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala , Espectrometria de Massas/métodos , Acústica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Cinética
2.
Electrophoresis ; 39(16): 2069-2082, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29749064

RESUMO

High-resolution capillary zone electrophoresis - mass spectrometry (CZE-MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle-down and intact CZE-MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post-translational modifications (PTMs) and glycosylation structures. Middle-down and intact CZE separations were performed in an acidified methanol-water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle-down analysis of the IdeS-digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X-deamidated, 1X-deamidated, and non-deamidated forms at baseline resolution. In the course of the middle-down CZE-MS analysis, separation of glycoforms of the FC /2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE-MS2 . Incorporation of TCEP-HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE-MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X-glycosylated, 1X-glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE-MS represents a complementary approach to the more conventional liquid-chromatography - mass spectrometry-based approaches.


Assuntos
Anticorpos Monoclonais/análise , Eletroforese Capilar/métodos , Glicosilação , Espectrometria de Massas
3.
J Am Soc Mass Spectrom ; 28(12): 2614-2634, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28875426

RESUMO

Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). Graphical Abstract ᅟ.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/análise , Bovinos , Escherichia coli/química , Proteínas de Escherichia coli/análise , Coelhos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Sus scrofa , Fluxo de Trabalho
4.
Anal Chem ; 88(2): 1138-46, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26641950

RESUMO

New and improved methods are required for the enhanced characterization of complex biopharmaceuticals, especially those with charge and glycan heterogeneity. High resolution separation and mass spectrometry (MS) analysis of intact proteoforms can contribute significantly to the characterization of such proteins, many of which are glycoproteins. Here, we report on capillary zone electrophoresis (CZE) coupled via a commercial CESI sheathless interface to an Orbitrap ELITE MS for the intact analysis of recombinant human interferon-ß1 (Avonex, rhIFN-ß1), a biopharmaceutical with complex glycosylation at a single N-linked site. Using a cross-linked polyethylenimine coating, column efficiencies between 350,000 and 450,000 plates were produced, allowing separation based on charge and subtle hydrodynamic volume differences. A total of 138 proteoforms were found, and 55 were quantitated. Charge species due to deamidation and sialylation were separated by CZE. Given the high column efficiency, isobaric positional isomers of a single sialic acid on biantennary glycan antennae were resolved. Further, triantennary isomers (antenna on α(1-3) or α(1-6) arms) were separated and confirmed by exoglycosidase digestion. Proteoforms of the N-terminal cleavage of methionine were detected by precursor molecular weight and top-down ETD and HCD analysis of the reduced protein. Quantitative analysis suggested potential correlations between the methionine loss with the relative amount of the deamidation, as well as the level of deamidation with glycan structure. We demonstrate that high resolution CZE separation of intact glycoprotein species coupled to MS has significant potential for the in-depth characterization and quantitative analysis of biopharmaceutical proteoforms.


Assuntos
Interferon beta/análise , Interferon beta/química , Medicamentos Biossimilares/análise , Medicamentos Biossimilares/química , Eletroforese Capilar , Humanos , Espectrometria de Massas
5.
J Proteome Res ; 14(6): 2367-84, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25927954

RESUMO

This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.


Assuntos
Vesículas Extracelulares/química , Lipídeos/química , Espectrometria de Massas/métodos , Proteômica , Animais , Meios de Cultivo Condicionados , Eletroforese em Gel Bidimensional , Humanos
6.
Mol Cell Proteomics ; 14(6): 1672-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755294

RESUMO

Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000-2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100-200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers.


Assuntos
Células MCF-7/metabolismo , Células-Tronco/metabolismo , Humanos , Espectrometria de Massas , Microfluídica , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...