Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 219: 864-874, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30572236

RESUMO

Thallium (Tl) is a very toxic heavy metal. As a part of ongoing investigations, the mobility, sources and fate of Tl were investigated for sediments from a watershed in the northern part of the Pearl River, South China, whose catchment has been seriously impacted by large-scale PbZn smelting activities onshore. A wide dispersion of severe Tl contamination was observed throughout the depth profiles. A modified IRMM (Institute for Reference Materials and Measurements, Europe) sequential extraction procedure of a selected depth profile uncovered an exceptionally high enrichment of Tl in geochemically-mobile fractions (i.e., weak-acid-exchangeable, reducible and oxidizable fractions), on average 5.94 ±â€¯2.19 mg/kg (74.6% ±â€¯5.1% of the total Tl content) not only in the surface sediments but also in deep sediments. The proximal quantitative source apportionment using Pb isotopic fingerprinting technique indicated that a majority (80%-90%) of Tl contamination along the depth profiles is anthropogenically derived from the PbZn smelting wastes. The results highlight the pivotal role of smelting activities in discharging huge amounts of geochemically-mobile Tl to the sediments down to approximately 1 m in length, which is quantitatively evidenced by Pb isotopic tracing technique. Lead isotopes combined with distribution of Tl and Pb contents identified a potential marker for a point source from the PbZn smelter in the river catchment, which also provides a theoretical framework for source apportionment of metal contamination in a larger river/marine system and in other sulfide mining/smelting areas likewise.


Assuntos
Monitoramento Ambiental/métodos , Isótopos/química , Chumbo/química , Metais Pesados/química , Tálio/química
2.
Environ Pollut ; 244: 174-181, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30336376

RESUMO

To date, there is not sufficient knowledge to fully understand the occurrence, transport and fate of residual uranium (U) from uranium mill tailings (UMT). Herein this study investigated different U release behaviors from natural UMT (without grinding) under four simulated acid rain (pH = 2.0-5.0) compared with controlled scenario (pH = 6.0) for 25 weeks. The results showed that the most notable U release was observed from UMTpH2.0, followed by UMTpH3.0 whereas a nonlinear relationship between pH and U release was observed from UMTpH4.0-6.0. The divergence of U release behaviors was attributed to the presence of minerals such as calcite and clinochlore. Autunite, a secondary mineral formed after leaching, might regulate U release in UMTpH3.0-6.0. Fick theory model revealed the shift of U release mechanism from surface dissolution to diffusion transport for UMTpH2.0, UMTpH3.0 and UMTpH5.0 at varied stage, whereas UMTpH4.0 and UMTpH6.0 displayed univocal dissolution and diffusion mechanism, respectively. This study highlights the necessity of performing long-term leaching tests to detect the "shift event" of leaching kinetics and to better understand the mechanism of U release influenced by mineralogy of the natural UMT under simulated acid rain conditions, which is conducive to developing UMT management strategies to minimize the risk of U release and exposure.


Assuntos
Chuva Ácida , Poluentes Radioativos do Solo/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Difusão , Concentração de Íons de Hidrogênio , Cinética , Minerais/efeitos adversos , Mineração , Modelos Químicos
3.
Chemosphere ; 193: 1172-1180, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29874746

RESUMO

As part of ongoing environmental investigations of U mining impacts, forty-two sediment samples of a nearly-half-meter-long sediment core retrieved from a natural reservoir near an active uranium (U) mining site, South China were analyzed to quantify the extent of U release and identify U release mechanism within the riverine catchment. Enrichment levels of U was dispersed not only in the surface sediments but also in deep sediments across the depth profile. Further analysis by SEM-EDS and XRD indicated that U partitioning in the depth profile was possibly controlled by complicated interplay of leaching and precipitation cycles of U-bearing minerals. Even with the relative complexity of U dispersal processes within the catchment, the Pb isotopic fingerprinting techniques allowed quantification of source inputs of the sediments by using a binary mixing model. The results revealed that along the depth profile, only 6%-50% of the sediment material is anthropogenically derived from the U ore tailing, with the other predominant proportions originated from geogenically natural weathering of granitic bedrocks. This study highlights the use of Pb isotopes as a powerful tool for quantitatively fingerprinting the sources of U dispersal in the sediment core, and natural-occurring U contamination that may become a hidden geoenvironmental health hazard in this area.


Assuntos
Sedimentos Geológicos/química , Isótopos/química , Chumbo/química , Oligoelementos/química , Urânio/química , China , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA