Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36508004

RESUMO

Anurans are known to detect vibrations, but few studies explore relationships between vibrations and resultant behaviors. We studied the reaction of calling captive-bred male midwife toads (Alytes obstetricans) to the randomized playback of a vibrational crescendo stimulus train. We considered two sources of natural abiotic vibrational stimuli: rainfall and wind. Rainfall was expected to induce calling and wind was expected to inhibit it. Playback experiments with two synthetic tones (200 Hz and 300 Hz) tested the sensitivity to pure tones and could possibly reveal a hearing sensitivity trend between these frequencies. The toads did not increase call rate in response to rainfall vibrations and only one of the five wind stimulus levels caused a significant decrease in call rate. This limited response could be explained, because the tested toads came from a captive population, where emergence may not be mediated by rainfall vibrations. We found that A. obstetricans is highly sensitive to very low frequencies, which could explain the sensitivity observed to vibrational stimuli. Playback of a random crescendo stimulus train proves to be a valid approach for addressing behavioral questions. However, the use of a captive population may have been a limitation in the clarity of the results.


Assuntos
Solo , Vibração , Masculino , Animais , Vento , Comportamento Animal/fisiologia , Anuros/fisiologia
2.
J Therm Biol ; 96: 102856, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627284

RESUMO

Communities usually possess a multitude of interconnected trophic interactions within food webs. Their regulation generally depends on a balance between bottom-up and top-down effects. However, if sensitivity to temperature varies among species, rising temperatures may change trophic interactions via direct and indirect effects. We examined the critical thermal maximum (CTmax) of 19 species from temperate wetlands (insect predators, amphibian larvae, zooplankton and amphipods) and determined if they vary in their sensitivity to warming temperatures. CTmax differed between the groups, with predatory insects having higher CTmax than amphibians (both herbivorous larval anurans and predatory larval salamanders), amphipods and zooplankton. In a scenario of global warming, these differences in thermal tolerance may affect top-down and bottom-up processes, particularly considering that insect predators are more likely to maintain or improve their performance at higher temperatures, which could lead to increased predation rates on the herbivores in the food web. Further studies are needed to understand how the energy flows through communities, how species' energy budgets may change and whether other physiological and behavioral responses (such as phenotypic plasticity and thermoregulation) can buffer or increase these changes in the top-down regulation of wetland food webs.


Assuntos
Anfíbios/fisiologia , Anfípodes/fisiologia , Insetos/fisiologia , Termotolerância , Áreas Alagadas , Zooplâncton/fisiologia , Animais , Mudança Climática , Cadeia Alimentar , Larva/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...