Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 12(16): 9512-9518, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424954

RESUMO

Nafion was investigated for its compatibility in the preparation of hybrid composites with electrospun Polybenzoxazine (PBz) surface-modified fibers by evaluating the effects on the surface and structure of the composite. A PBz fiber mat was first crosslinked by thermal treatment after electrospinning to enhance the mechanical integrity of the fibers prior to modification. Further surface modification via free radical ozonation was carried out by potentiating oxygen-based functional groups of hydroxyl radicals (-OH) onto fibers' exposed surfaces. The sequential modifications by crosslinking and ozone treatment were evaluated by analyzing surface properties using XPS, ATR-FTIR and water contact angle which determined the enhanced properties of the fibers that were beneficial to the target functionality. Electron spectroscopy confirmed that fibers' surfaces were changed with the new surface chemistry without altering the chemical structure of PBz. The presence of higher oxygen-based functional groups on fibers' surfaces based on the resulting atomic compositions was correlated with the change in surface wettability by becoming hydrophilic with contact angle ranging from 21.27° to 59.83° compared to hydrophobic pristine PBz fibers. This is due to electrophilic aromatic substitution with hydroxyl groups present on the surfaces of the fibers endowed by ozonation. The resulting surface-modified fiber mat was used for the preparation of composites by varying two process parameters, the amount of Nafion dispersion and its homogenization and curing time, which was evaluated for compatibility and interaction as fillers to form hybrid composites. The analyses of SEM images revealed the effects of shorter homogenization and curing time on composites with rougher and wrinkled surfaces shown on the final hybrid composite's structure while decreasing the amount of Nafion at the same homogenization time but longer curing time showed its influence on improvement of compatibility and surface morphology.

3.
RSC Adv ; 11(17): 10002-10009, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423484

RESUMO

Simple modification by thermal treatment is the commonly used approach to enhance the performance of electrospun fibers. This was investigated in the thermal treatment of polybenzoxazine (PBz) fibers blended with sulfur copolymers (SDIB) to determine the effect of varying treatment conditions on the microstructure and morphology of PBz fibers with the effect of incorporating sulfur functional groups on resulting properties. Mechanical properties of PBz are greatly improved by thermally-induced ring-opening polymerization (ROP) of the oxazine ring. Blending with sulfur copolymers (SDIB) could have beneficial effects on endowed features on fibers but could also affect the resulting properties of SDIB-blended PBz fibers during crosslinking reactions. Fiber mats were fabricated by electrospinning of PBz (10 wt%) blended with SDIB (10 wt%). Physical modification with varying conditions of sequential thermal treatment were evaluated and compared to the conditions applied on pristine PBz fibers. Changes in morphology and microstructure of fibers after modification were analyzed through scanning electron microscopy (SEM) while elemental compositions were identified after varying the conditions of thermal treatment. Adjustment of treatment conditions using two-step temperature sequential thermal treatment with higher temperatures of 160 °C and 240 °C showed significant changes in microstructure and morphology of fibers. Lower temperatures of 120 °C and 160 °C exhibited microstructure and morphology of fibers which affected the fiber diameter and fiber networks. Cross-sectional SEM images also confirmed the adversed effect of high-temperature treatment conditions on fibrous structures while low-temperature treatment retained the fibrous structures with more compact and stiff fiber networks. SDIB-blended PBz fibers were also evaluated by TGA and DSC to correlate the changes in structure and morphology with the thermal stability and integrity of blended SDIB/PBz fibers as compared to pristine PBz with the effect of change in treatment conditions. Fiber strength indicated slower weight loss for blended fibers and higher onset temperature of degradation which resulted in more thermally stable fibers.

4.
RSC Adv ; 10(24): 14198-14207, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498459

RESUMO

Electrospun nanofibers of polybenzoxazines (PBzs) were fabricated using an electrospinning process and crosslinked by a sequential thermal treatment. Functionalization by the direct sulfonation process followed after the post-electrospinning modification treatment. The first stage of experiment determined the effects of varying the concentration of sulfuric acid as the sulfonating agent in the sulfonation reaction under ordinary conditions. The second stage examined the mechanism and kinetics of the sulfonation reaction using only concentrated H2SO4 at different reaction time periods of 3 h, 6 h, and 24 h. The mechanism of the sulfonation reaction with PBz nanofibers was proposed with only one sulfonic acid (-SO3H) group attached to each of the repeating units since only first type substitution in the aromatic structure occurs under this condition. The kinetics of the reaction exhibited a logarithmic correlation where the rate of change in the ion exchange capacity (IEC) with the reaction time increased rapidly and then reached a plateau at the reaction time between 18 h and 24 h. Effective sulfonation was confirmed by electron spectroscopy with a characteristic peak associated with the C-S bond owing to the sulfonate group introduced onto the surface of the nanofibers. ATR-FTIR spectroscopy also confirmed these results for varying reaction times. The SEM images showed that sulfonation has no drastic effects on the morphology and microstructure of the nanofibers but a rougher surface was evident due to the wetted fibers with sulfonate groups attached to the surface. EDX spectra exhibited sulfur peaks where the concentration of sulfonate groups present in the nanofibers is directly proportional to the reaction time. From surface wettability studies, it was found that the nanofibers retained the hydrophobicity after sulfonation but the inherent surface property of PBz nanofibers was observed by changing the pH level of water to basic, which switches its surface properties to hydrophilic. The thermal stability of the sulfonated nanofibers showed almost the same behavior compared to non-sulfonated nanofibers except for the 24 h sulfonation case, which has slightly lower onset temperature of degradation.

5.
Nanomaterials (Basel) ; 9(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717767

RESUMO

This study demonstrated the processability of sulfur copolymers (SDIB) into polymer blend with polybenzoxazines (PBz) and their compatibility with the electrospinning process. Synthesis of SDIB was conducted via inverse vulcanization using elemental sulfur (S8). Polymer blends produced by simply mixing with varying concentration of SDIB (5 and 10 wt%) and fixed concentration of PBz (10 wt%) exhibited homogeneity and a single-phase structure capable of forming nanofibers. Nanofiber mats were characterized to determine the blending effect on the microstructure and final properties. Fiber diameter increased and exhibited non-uniform, broader fiber diameter distribution with increased SDIB. Microstructures of mats based on SEM images showed the occurrence of partial aggregation and conglutination with each fiber. Incorporation of SDIB were confirmed from EDX which was in agreement with the amount of SDIB relative to the sulfur peak in the spectra. Spectroscopy further confirmed that SDIB did not affect the chemistry of PBz but the presence of special interaction benefited miscibility. Two distinct glass transition temperatures of 97 °C and 280 °C indicated that new material was produced from the blend while the water contact angle of the fibers was reduced from 130° to 82° which became quite hydrophilic. Blending of SDIB with component polymer proved that its processability can be further explored for optimal spinnability of nanofibers for desired applications.

6.
Chemosphere ; 80(8): 894-900, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20553932

RESUMO

The separation of synthetic dye Rhodamine 6G (R6G) and water was investigated using blended organic liquids in a supported liquid membrane (SLM) extraction system. Liquid membrane (LM) components include octyl alcohol (OcOH) as the dye extractant and a polysiloxane liquid as the stabilizing agent. Initial permeation results revealed the suitability of poly (phenyl methyl) siloxane (PPMS) over poly (octyl methyl) siloxane as the blending agent. The most acceptable condition for dye extraction was determined at feed solution pH congruent with 1, wherein highest distribution coefficient, K(D) (OcOH/H(2)O)=18, was attained. Though permeability decreased at optimal blending condition of 1:1 (w/w) OcOH/PPMS, SLM longevity was exhibited with>98% LM retention after 15 h operation in contrast to pure OcOH SLM system (>60% LM loss). Equilibrium experiments reveal that dye extraction followed Langmuir adsorption principle. The dye transport was elucidated using mass transfer analysis wherein it showed a decrease in overall coefficient (k(o)) at increasing feed concentrations. This was a direct consequence of K(D) decline, which becomes more apparent at higher concentrations when SLM saturation point is approached. At varied hydrodynamic conditions, improved k(o) values were observed up to Re(omega)=10,000 when minimal variation in film resistance is attained. Beyond this condition, k(o) becomes independent from stirring rate effect nonetheless SLM stability is compromised due to shear-induced LM losses.


Assuntos
Fracionamento Químico/métodos , Recuperação e Remediação Ambiental/métodos , Rodaminas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Água/química , Cinética , Octanóis/química , Rodaminas/análise , Rodaminas/química , Siloxanas/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...