Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447408

RESUMO

Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved. Moreover, essential clinical and osteoblastic fate-controlling advances have been achieved with the use of synthetic polymers in the production of hydrogels. However, current trends look towards fabricating hydrogels from biological precursors, such as biopolymers, due to the high biocompatibility, degradability, and mechanical control that can be regulated. Therefore, this review analyzes the concept of hydrogels and the characteristics of chitosan, collagen, and gelatin as excellent candidates for fabricating BTE scaffolds. The changes and opportunities brought on by these biopolymers in bone regeneration are discussed, considering the integration, synergy, and biocompatibility features.

2.
Materials (Basel) ; 16(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676534

RESUMO

Atherosclerosis lesions are described as the formation of an occlusive wall-vessel plaque that can exacerbate infarctions, strokes, and even death. Furthermore, atherosclerosis damages the endothelium integrity, avoiding proper regeneration after stent implantation. Therefore, we investigate the beneficial effects of TiO2 nanotubes (NTs) in promoting the initial response of detrimental human atherosclerotic-derived endothelial cells (AThEC). We synthesized and characterized NTs on Ti6Al4V by anodization. We isolated AThEC and tested the adhesion long-lasting proliferation activity, and the modulation of focal adhesions conducted on the materials. Moreover, ultrastructural cell-surface contact at the nanoscale and membrane roughness were evaluated to explain the results. Our findings depicted improved filopodia and focal adhesions stimulated by the NTs. Similarly, the NTs harbored long-lasting proliferative metabolism after 5 days, explained by overcoming cell-contact interactions at the nanoscale. Furthermore, the senescent activity detected in the AThEC could be mitigated by the modified membrane roughness and cellular stretch orchestrated by the NTs. Importantly, the NTs stimulate the initial endothelial anchorage and metabolic recovery required to regenerate the endothelial monolayer. Despite the dysfunctional status of the AThEC, our study brings new evidence for the potential application of nano-configured biomaterials for innovation in stent technologies.

3.
Int J Nanomedicine ; 17: 5469-5488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426372

RESUMO

Introduction: Titanium (Ti) and its alloys (eg, Ti6Al4V) are exceptional treatments for replacing or repairing bones and damaged surrounding tissues. Although Ti-based implants exhibit excellent osteoconductive performance under healthy conditions, the effectiveness and successful clinical achievements are negatively altered in diabetic patients. Concernedly, diabetes mellitus (DM) contributes to osteoblastic dysfunctionality, altering efficient osseointegration. This work investigates the beneficial osteogenic activity conducted by nanostructured TiO2 under detrimental microenvironment conditions, simulated by human diabetic serum. Methods: We evaluated the bone-forming functional properties of osteoblasts on synthesized TiO2 nanotubes (NTs) by anodization and Ti6Al4V non-modified alloy surfaces under detrimental diabetic conditions. To simulate the detrimental environment, MC3T3E-1 preosteoblasts were cultured under human diabetic serum (DS) of two diagnosed and metabolically controlled patients. Normal human serum (HS) was used to mimic health conditions and fetal bovine serum (FBS) as the control culture environment. We characterized the matrix mineralization under the detrimental conditions on the control alloy and the NTs. Moreover, we applied immunofluorescence of osteoblasts differentiation markers on the NTs to understand the bone-expression stimulated by the biochemical medium conditions. Results: The diabetic conditions depressed the initial osteoblast growth ability, as evidenced by altered early cell adhesion and reduced proliferation. Nonetheless, after three days, the diabetic damage was suppressed by the NTs, enhancing the osteoblast activity. Therefore, the osteogenic markers of bone formation and the differentiation of osteoblasts were reactivated by the nanoconfigured surfaces. Far more importantly, collagen secretion and bone-matrix mineralization were stimulated and conducted to levels similar to those of the control of FBS conditions, in comparison to the control alloy, which was not able to reach similar levels of bone functionality than the NTs. Conclusion: Our study brings knowledge for the potential application of nanostructured biomaterials to work as an integrative platform under the detrimental metabolic status present in diabetic conditions.


Assuntos
Diabetes Mellitus , Nanotubos , Humanos , Células Cultivadas , Nanotubos/química , Osteoblastos , Ligas , Diabetes Mellitus/metabolismo
4.
Bioinorg Chem Appl ; 2021: 6209094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34931122

RESUMO

Ti6Al4V alloys are the primary materials used for clinical bone regeneration and restoration; however, they are substantially susceptible to biomaterial-related infections. Therefore, in the present work, we applied a controllable and stable oxidative nanopatterning strategy by applying H3PO4, a weaker dissociating acid, as a substitute for H2SO4 in the classical piranha reaction. The results suggest that our method acted as a concomitant platform to develop reproducible diameter-controlled TiO2 nanopores (NPs). Interestingly, our procedure illustrated stable temperature reactions without exothermic responses since the addition of mixture preparation to the nanopatterning reactions. The reactions were carried out for 30 min (NP14), 1 h (NP7), and 2 h (NP36), suggesting the formation of a thin nanopore layer as observed by Raman spectroscopy. Moreover, the antimicrobial activity revealed that NP7 could disrupt active microbial colonization for 2 h and 6 h. The phenotype configuration strikingly showed that NP7 does not alter the cell morphology, thus proposing a disruptive adhesion pathway instead of cellular lysis. Furthermore, preliminary assays suggested an early promoted osteoblasts viability in comparison to the control material. Our work opens a new path for the rationale design of nanobiomaterials with "intelligent surfaces" capable of decreasing microbial adhesion, increasing osteoblast viability, and being scalable for industrial transfer.

5.
Materials (Basel) ; 14(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208505

RESUMO

The construction industry has extensively demanded novel green inhibition strategies for the conservation and protection of carbon steel-reinforced concrete structures. For the first time, the effect of Azadirachta indica leaf extract (Neem) as a potential corrosion inhibitor of carbon steel in reinforced concrete under corrosion in saline simulated media was evaluated. To assess the corrosion inhibition behavior of the Neem natural organic extract, three inorganic commercial inhibitors were tested to compare following the criteria established by Stratful for half-cell potential under a simulated chloride environment. Moreover, the effect of concrete integrity by the Neem treatment was recorded after different temperature conditions, slump, weight alteration, air content, compressive strength, and chloride-ions penetration. The results suggested that the Neem treatments did not alter the concrete integrity and the physicochemical parameters. We reached a promoted long-term corrosion protection of 95% after 182 days of evaluation. Thus far, our current results open up a new promising "green" road to the conservation of carbon steel in reinforced concrete for the construction industry.

6.
ACS Omega ; 6(24): 15625-15636, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179607

RESUMO

The development of nanoadhesion bonds at the cell-material biointerface has been considered as a current prospective mechanism of microbial adhesion and colonization. However, there is a tremendous lack of evidence for the rational design of outstanding antifungal nanoconfigured materials. Therefore, extending our previous insights of evidence, we found that blocking the adhesion and biofilm formation of Candida albicans on NTs requires the inhibition of fungal nanoadhesion bonds. This work reports a concept for understanding the antifungal behavior of the crystallographic phase for anatase (NTs-annealed) and amorphous NTs. Herein, we demonstrated that the crystallographic orientation is a predominant parameter to reduce C. albicans, over the surface roughness and chemistry. We showed that the anatase phase conducted to an invasive phenotype, cellular envelopment insertion, followed by the improved cellular spread. Meanwhile, the amorphous configuration imposed reduced nanoadhesion bonds mainly appreciated over the mouths of the NTs, as revealed by cross sectioning. Moreover, our results showed that under fungal conditions, the experimental materials could reduce the surface energy. This work highlights that the crystallographic pattern predominantly controls the antifungal activity of NTs. The evaluated systems proposed that the NTs-annealed conducted an optimized insertion of fungal cells. Nonetheless, amorphous NTs inhibited the deposition of C. albicans via blocking the insertion and the development of nanoadhesion bonds, without morphology aberrations. The present discoveries can further inspire the rational design of upgraded nanoconfigured surfaces with noteworthy antifungal characteristics for antimicrobial coating technologies.

7.
Int J Nanomedicine ; 16: 2689-2702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854315

RESUMO

BACKGROUND: The COVID-19 pandemic is requesting highly effective protective personnel equipment, mainly for healthcare professionals. However, the current demand has exceeded the supply chain and, consequently, shortage of essential medical materials, such as surgical masks. Due to these alarming limitations, it is crucial to develop effective means of disinfection, reusing, and thereby applying antimicrobial shielding protection to the clinical supplies. PURPOSE: Therefore, in this work, we developed a novel, economical, and straightforward approach to promote antimicrobial activity to surgical masks by impregnating silver nanoparticles (AgNPs). METHODS: Our strategy consisted of fabricating a new alcohol disinfectant formulation combining special surfactants and AgNPs, which is demonstrated to be extensively effective against a broad number of microbial surrogates of SARS-CoV-2. RESULTS: The present nano-formula reported a superior microbial reduction of 99.999% against a wide number of microorganisms. Furthermore, the enveloped H5N1 virus was wholly inactivated after 15 min of disinfection. Far more attractive, the current method for reusing surgical masks did not show outcomes of detrimental amendments, suggesting that the protocol does not alter the filtration effectiveness. CONCLUSION: The nano-disinfectant provides a valuable strategy for effective decontamination, reuse, and even antimicrobial promotion to surgical masks for frontline clinical personnel.


Assuntos
Anti-Infecciosos/farmacologia , Desinfetantes/farmacologia , Máscaras , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Antivirais/química , Antivirais/farmacologia , COVID-19/prevenção & controle , COVID-19/transmissão , Embrião de Galinha , Desinfetantes/administração & dosagem , Desinfetantes/química , Desinfecção/métodos , Difusão Dinâmica da Luz , Reutilização de Equipamento , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Máscaras/virologia , Nanopartículas Metálicas/administração & dosagem , Testes de Sensibilidade Microbiana , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Difração de Raios X
8.
Mater Sci Eng C Mater Biol Appl ; 119: 111501, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321601

RESUMO

Current outbreaks associated with drug-resistant clinical strains are demanding for the development of broad-spectrum antibacterial agents. The bactericidal materials should be eco-friendly, economical and effective to suppress bacterial growth. Thus, in this work, diameter controlled spherical Cucore-Agshell nanoparticles (Ag@CuNPs) with diameter ranging from 70 to 100 nm by one-step co-reduction approach were designed and synthesized. The Ag@CuNPs were homogenous, stable, and positively charged. The 70 nm Ag@CuNPs showed a consistent and regular Ag shielding. We observed the 100 nm Ag@CuNPs achieved symmetrical doped Ag clusters on the Cu core surface. We used Gram-positive and Gram-negative models strains to test the wide-spectrum antibacterial activity. The Ag@CuNPs showed detrimental microbial viability in a dose-dependent manner; however, 70 nm Ag@CuNPs were superior to those of 100 nm Ag@CuNPs. Initially, Ag@CuNPs attached and translocated the membrane surface resulting in bacterial eradication. Our analyses exhibited that antibacterial mechanism was not governed by the bacterial genre, nonetheless, by cell type, morphology, growing ability and the NPs uptake capability. The Ag@CuNPs were highly tolerated by human fibroblasts, mainly by the use of starch as glucosidic capper and stabilizer, suggesting optimal biocompatibility and activity. The Ag@CuNPs open up a novel platform to study the potential action of bimetallic nanoparticles and their molecular role for biomedical, clinical, hospital and industrial-chemical applications.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Prata/farmacologia , Relação Estrutura-Atividade
9.
Mater Sci Eng C Mater Biol Appl ; 96: 677-683, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606581

RESUMO

Infections associated with bone implant prostheses are mainly related to bacterial contaminations. Recent investigations have suggested an important role of opportunistic fungal cells associated with non-responding antibacterial treatments. Thus, in order to evaluate the early Candida albicans (C. albicans) behavior; we built on Ti6Al4V surfaces nanopores (NPs) with controlled diameters applying oxidative nanopatterning for 30 (NP30) and 60 min (NP60). As a result of nanopatterning NPs with diameters of 12 and 24 nm were synthesized. Physicochemical differences were observed between both types of NPs, the most highlighting of which are anatase phase formation and improved hydrophilicity of NP60. C. albicans adhesion and colonization was assessed using scanning electron microscopy and by yeast counting for viability evaluation. The fungal behavior on the substrates was significantly different, showing an initial exopolysaccharide secretion stimulated by the nanopatterned surfaces. Larger NPs led to an important reduction in viability with decreased cell-surface contact bonds. The obtained results demonstrate that special control in the fabrication of nanostructured TiO2 materials can improve the early fungal resistance, especially for dental implants.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Implantes Dentários/microbiologia , Nanoporos , Titânio , Ligas , Antifúngicos/química , Antifúngicos/farmacologia , Humanos , Titânio/química , Titânio/farmacologia
10.
Arch Oral Biol ; 95: 95-99, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081375

RESUMO

Periodontitis is a chronic inflammatory disease that compromises the integrity of the periodontium. Despite extensive research involving periodontitis, the detailed mechanisms underlying periodontal inflammation remain unclear. However, new important expression regulators have been emerging, such as non-coding RNAs, which are important determinants in the molecular control of the inflammatory process. Taking into consideration the vital role of non-coding RNAs, we determined for the first time the expression profiles of different long non-coding RNAs (lncRNAs) that are implicated in inflammation. In this study, we take periodontal samples of healthy subjects, patients with gingivitis and with periodontitis. In both disease groups, the lncRNA OIP5-AS1 expression levels were lower than levels in healthy subjects (P < 0.05). This study reveals new insights into the relative levels of OIP5-AS1 lncRNA in healthy, gingivitis and periodontal tissue, which may have important applications as a potential biomarker with protagonist activity in the development and manifestation of destructive periodontitis.


Assuntos
Periodontite/metabolismo , RNA Longo não Codificante/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Eur J Pharmacol ; 822: 95-107, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355558

RESUMO

We have reported on the capacity of (-)-epicatechin ((-)-EPI) to stimulate mitochondrial biogenesis (MiB) in mouse skeletal muscle (SkM). However, the mechanisms mediating the effects of (-)-EPI are not fully understood. We previously identified a role of the G-protein coupled estrogen receptor (GPER) in modulating the vascular effects of (-)-EPI. We therefore tested the hypothesis that GPER mediates (at least in part) the stimulatory effects of (-)-EPI on MiB in SkM cells. As an in vitro model, we employed mouse SkM-derived C2C12 myoblasts differentiated into myotubes. Using confocal microscopy, we detected GPER at the cell surface and cytoplasm in C2C12 myotubes. Treatment with (-)-EPI (3 and 10µM) resulted in the stimulation of MiB as per increases in mitochondrial inner (MitoTracker Red FM fluorescence staining) and outer membrane (porin protein levels) markers, transcription factors involved in MiB stimulation (i.e., nuclear respiratory factor-2 [NRF-2] and mitochondrial transcription factor A [TFAM] protein levels) and citrate synthase (CS) activity levels. (-)-EPI-treated myotubes were longer and wider compared to vehicle-treated myotubes. The effects of (-)-EPI on myotube mitochondria and cell size were larger in magnitude to those observed with the GPER agonist G-1. The chemical blockade and down-regulation (siRNA) of GPER evidenced a partial and complete blockade of measured endpoints following (-)-EPI- or G-1-treatment, respectively. Altogether, results indicate that GPER is expressed in muscle cells and appears to mediate to a significant extent, the stimulatory effects of (-)-EPI on MiB. Thus, GPER activation may account for the stimulatory effects of (-)-EPI on SkM structure/function.


Assuntos
Catequina/farmacologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Biogênese de Organelas , Receptores de Estrogênio/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ligantes , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
12.
Food Funct ; 9(1): 307-319, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29171848

RESUMO

We reported that (-)-epicatechin can stimulate mitochondria biogenesis and improve metabolism. However, preliminary studies indicate that the (+) stereoisomer form may be more potent. We evaluated in a preliminary manner, the pharmacokinetics (PK) and initial safety analysis of (+)-epicatechin ((+)-Epi) in healthy and pre-diabetic subjects. Using a mouse model of diet-induced obesity and insulin resistance, we also evaluated the metabolic effects of (+)-Epi vs. (+)-catechin (Cat) to determine class effects. In the Phase I PK study, subjects were provided a single incremental oral dose of (+)-Epi (10, 30 or 100 mg). For the PD study, subjects were provided a single 30 mg dose per day for 7 days. Blood samples were collected and safety measures were performed. Incremental doses of (+)-Epi increase the half-life of blood metabolites from 1.2-4.9 h. The compound was well tolerated and no adverse effects were reported. Seven day dosing of pre-diabetic subjects led to tendencies for reductions in circulating levels of tumor necrosis factor-α and monocyte chemoattractant protein-1, which returned to baseline by 7 days after treatment. In animals, 2 weeks of oral dosing (0.003, 0.01, 0.03, 0.1 and 0.3 mg kg-1 day-1) dose dependently improved metabolism-related endpoints (weight gain, glucose, cholesterol, triglyceride, with thresholds as low as 0.01 mg kg-1 day-1). Cat yielded no effects at 0.1 mg kg-1 day-1. Results indicate that (+)-Epi evidences a favorable PK and safety profile. Using a pre-clinical model, the compound positively modulates metabolism, which may link to mitochondrial effects. Effects are not due to general antioxidant actions, as Cat yielded no effects.


Assuntos
Catequina/farmacocinética , Estado Pré-Diabético/tratamento farmacológico , Adulto , Idoso , Animais , Glicemia , Catequina/administração & dosagem , Catequina/sangue , Colesterol , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Projetos Piloto , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Triglicerídeos , Adulto Jovem
13.
Molecules ; 22(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524087

RESUMO

It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO2 nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis (S. epidermidis) and Pseudomonas aeruginosa (P. aeruginosa) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.


Assuntos
Nanoestruturas/ultraestrutura , Osteoblastos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Titânio/farmacologia , Ligas , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/química , Osteoblastos/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química
14.
Mater Sci Eng C Mater Biol Appl ; 76: 59-65, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482568

RESUMO

We have provided evidence that the beneficial effect of super-oxidized water (SOW) disinfected Ti6Al4V-TiO2 nanotubes (NTs) can reduce bacterial adhesion and biofilm formation. However, the need of antifungal nanostructured surfaces with osteoactive capabilities is an important goal that has been arising for dental implants (DI) applications. Thus, in the present study we isolated and tested the effects of Candida albicans (C. albicans) on disinfected, wetter and nanoroughness NTs compared to a non-modified control. Moreover, we elucidated part of the fungal adhesion mechanism by studying and relating the mycotic adhesion kinetics and the formation of fungal nanoadhesion bonds among the experimental materials, to gain new insight of the fungal-material-interface. Similarly, the initial behavior of human alveolar bone osteoblasts (HAOb) was microscopically evaluated. NTs significantly reduced the yeasts adhesion and viability with non-outcomes of biofilm than the non-modified surface. Cross-sectioning of the fungal cells revealed promoted nano-contact bonds with superior fungal spread on the control alloy interface; meanwhile NTs evidenced decreased tendency along time; suggesting, down-regulation by the nanostructured morphology and the SOW treatment. Importantly, the initial performance of HAOb demonstrated strikingly promoted anchorage with effects of filopodia formation and increased vital cell on NTs with SOW. The present study proposes SOW treatment as an active protocol for synthesis and disinfection of NTs with potent antifungal capability, acting in part by the reduction of nano-adhesion bonds at the surface-fungal interface; opening up a novel route for the investigation of mycotic-adhesion processes at the nanoscale for bone implants applications.


Assuntos
Nanotubos , Animais , Adesão Celular , Regulação para Baixo , Humanos , Nanoestruturas , Propriedades de Superfície , Suínos , Titânio
15.
J Nanobiotechnology ; 15(1): 10, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143540

RESUMO

BACKGROUND: Neovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis. METHODS: The Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy. RESULTS: The anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were evidently stimulated on the nanostructured surface, also leading to increased activation of VEGFR2 and eNOS on Ti6Al4V-NTs compared to the control Ti6Al4V alloy. Although the rougher alloy promoted BCAECs viability and proliferation, filopodia formation was poor. CONCLUSION: The in vitro results suggest that 70 nm diameter NTs manufactured by anodization and cleaned using SOW promotes in vitro endothelial activity, which may improve in vivo angiogenesis supporting a faster clinical osseointegration process.


Assuntos
Indutores da Angiogênese/farmacologia , Nanotubos/química , Neovascularização Fisiológica/efeitos dos fármacos , Titânio/química , Ligas , Animais , Bovinos , Adesão Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Implantes Dentários , Células Endoteliais/efeitos dos fármacos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Óxido Nítrico Sintase Tipo III/metabolismo , Tamanho da Partícula , Espectrometria por Raios X , Propriedades de Superfície , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Molhabilidade
16.
Mater Sci Eng C Mater Biol Appl ; 60: 239-245, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706527

RESUMO

Amorphous titanium dioxide (TiO2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability.


Assuntos
Nanoestruturas/química , Nanotubos/química , Osteoblastos/citologia , Titânio/química , Titânio/farmacologia , Animais , Desinfecção , Viabilidade Microbiana/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
17.
Pharmacol Res ; 100: 309-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26303816

RESUMO

We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection.


Assuntos
Catequina/farmacologia , Células Endoteliais/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Actinas/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Bovinos , Células Cultivadas , Células Endoteliais/metabolismo , Estrogênios/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Óxido Nítrico/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
18.
Materials (Basel) ; 8(3): 867-883, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28787976

RESUMO

Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...