Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958745

RESUMO

The excessive accumulation of chloride (Cl-) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl-, Na+, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin (Citrus reshni) and the disease-resistant donor Poncirus trifoliata were performed with the aim to identify repeatable QTLs that regulate leaf Cl- (and/or Na+) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl- was detected in chromosome 6 (LCl-6), where 23 potential candidate genes coding for transporters were identified using the C. clementina genome as reference. Transcriptomic analysis revealed two important candidate genes coding for a member of the nitrate transporter 1/peptide transporter family (NPF5.9) and a major facilitator superfamily (MFS) protein. Cell wall biosynthesis- and secondary metabolism-related processes appeared to play a significant role in differential gene expression in LCl-6. Six likely gene candidates were mapped in LCl-6, showing conserved synteny in C. reshni. In conclusion, markers to select beneficial Cleopatra mandarin alleles of likely candidate genes in LCl-6 to improve salt tolerance in citrus rootstock breeding programs are provided.


Assuntos
Citrus , Locos de Características Quantitativas , Tolerância ao Sal/genética , Transcriptoma , Citrus/genética , Melhoramento Vegetal , Proteínas de Membrana Transportadoras/genética
2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563521

RESUMO

Salt tolerance is a target trait in plant science and tomato breeding programs. Wild tomato accessions have been often explored for this purpose. Since shoot Na+/K+ is a key component of salt tolerance, RNAi-mediated knockdown isogenic lines obtained for Solanum galapagense alleles encoding both class I Na+ transporters HKT1;1 and HKT1;2 were used to investigate the silencing effects on the Na and K contents of the xylem sap, and source and sink organs of the scion, and their contribution to salt tolerance in all 16 rootstock/scion combinations of non-silenced and silenced lines, under two salinity treatments. The results show that SgHKT1;1 is operating differently from SgHKT1;2 regarding Na circulation in the tomato vascular system under salinity. A model was built to show that using silenced SgHKT1;1 line as rootstock would improve salt tolerance and fruit quality of varieties carrying the wild type SgHKT1;2 allele. Moreover, this increasing effect on both yield and fruit soluble solids content of silencing SgHKT1;1 could explain that a low expressing HKT1;1 variant was fixed in S. lycopersicum during domestication, and the paradox of increasing agronomic salt tolerance through silencing the HKT1;1 allele from S. galapagense, a salt adapted species.


Assuntos
Proteínas de Transporte de Cátions , Solanum lycopersicum , Solanum , Proteínas de Transporte de Cátions/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum/genética
3.
Plant Physiol Biochem ; 168: 282-293, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34673319

RESUMO

We analyzed the physiological impact of function loss on cheesmaniae alleles at the HKT1;1 and HKT1;2 loci in the roots and aerial parts of tomato plants in order to determine the relative contributions of each locus in the different tissues to plant Na+/K+ homeostasis and subsequently to tomato salt tolerance. We generated different reciprocal rootstock/scion combinations with non-silenced, single RNAi-silenced lines for ScHKT1;1 and ScHKT1;2, as well as a silenced line at both loci from a near isogenic line (NIL14), homozygous for the Solanum cheesmaniae haplotype containing both HKT1 loci and subjected to salinity under natural greenhouse conditions. Our results show that salt treatment reduced vegetative growth and altered the Na+/K+ ratio in leaves and flowers; negatively affecting fruit production, particularly in graft combinations containing single silenced ScHKT1;2- and double silenced ScHKT1;1/ScHKT1;2 lines when used as scion. We concluded that the removal of Na+ from the xylem by ScHKT1;2 in the aerial part of the plant can have an even greater impact than that on Na+ homeostasis at the root level under saline conditions. Also, ScHKT1;1 function loss in rootstock greatly reduced the Na+/K+ ratio in leaf and flower tissues, minimized yield loss under salinity. Our results suggest that, in addition to xylem Na+ unloading, ScHKT1;2 could also be involved in Na+ uploading into the phloem, thus promoting Na+ recirculation from aerial parts to the roots. This recirculation of Na+ to the roots through the phloem could be further favoured by ScHKT1;1 silencing at these roots.


Assuntos
Solanum lycopersicum , Alelos , Flores , Solanum lycopersicum/genética , Folhas de Planta , Raízes de Plantas/genética , Potássio , Tolerância ao Sal/genética
4.
Plant Physiol Biochem ; 154: 341-352, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32604062

RESUMO

Genes encoding HKT1-like Na+ transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na+ from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S. cheesmaniae (NIL14) allele, at HKT1;2 loci and their respective RNAi-Sl/ScHKT1;2 lines. The results obtained show that both ScHKT1;2- and SlHKT1;2-silenced lines display hypersensitivity to salinity associated with an altered leaf Na+/K+ ratio, thus confirming that HKT1;2 plays an important role in Na+ homeostasis and salinity tolerance in tomato. Both silenced lines also showed Na+ over-accumulation and a slight, but significant, reduction in K+ content in the flower tissues of salt-treated plants and consequently a higher Na+/K+ ratio as compared to the respective unsilenced lines. This altered Na+/K+ ratio in flower tissues is associated with a sharp reduction in fruit yield, measured as total fresh weight and number of fruits, in both silenced lines under salinity conditions. Our findings demonstrate that Na+ transporter HKT1;2 protects the flower against Na+ toxicity and mitigates the reduction in tomato fruit yield under salinity conditions.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proteínas de Plantas/fisiologia , Estresse Salino , Solanum lycopersicum/fisiologia , Flores/química , Frutas/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/química
5.
Plant Cell Environ ; 40(5): 658-671, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27987209

RESUMO

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.


Assuntos
Proteínas de Transporte de Cátions/genética , Homeostase , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simportadores/genética , Alelos , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Loci Gênicos , Homeostase/efeitos dos fármacos , Homeostase/genética , Endogamia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Análise de Componente Principal , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Simportadores/metabolismo
6.
Physiol Plant ; 152(4): 700-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24773242

RESUMO

For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Cloreto de Sódio/farmacologia , Solanum lycopersicum/fisiologia , Frutas/genética , Frutas/fisiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transporte de Íons , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salinidade , Tolerância ao Sal , Sódio/metabolismo , Transgenes , Xilema/genética , Xilema/fisiologia
7.
Plant Cell Environ ; 36(6): 1171-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23216099

RESUMO

The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na(+) ] and [K(+) ] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na(+) -selective class I-HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single-nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near-isogenic lines (NILs): 157-14 (double homozygote for the cheesmaniae alleles) and 157-17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157-14 in comparison with 157-17. A significant difference between NILs was also found for [K(+) ] and the [Na(+) ]/[K(+) ] ratio in leaf and stem but not for [Na(+) ] arising a disagreement with the corresponding RIL population. Their association with leaf [Na(+) ] and salt tolerance in tomato is also discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Potássio/fisiologia , Locos de Características Quantitativas , Sódio/fisiologia , Solanum lycopersicum/genética , Simportadores/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas , Teste de Complementação Genética , Homeostase/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Simportadores/metabolismo
8.
Bioengineered ; 3(5): 298-302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22825351

RESUMO

The Ca(2+)-dependent SOS pathway has emerged as a key mechanism in the homeostasis of Na(+) and K(+) under saline conditions. We recently identified and functionally characterized by complementation studies in yeast and Arabidopsis the gene encoding the calcineurin-interacting protein kinase of the SOS pathway in tomato, SlSOS2.(1) We also show evidences on the biotechnological potential of SlSOS2 conferring salt tolerance to transgenic tomato. The increased salinity tolerance of SlSOS2 overexpressing plants is associated with higher sodium content in stems and leaves. SlSOS2 overexpression upregulates the Na(+)/H(+) exchange at the plasma membrane (SlSOS1) and K(+), Na(+)/H(+) antiport at the endosomal and vacuolar compartments (LeNHX2 and LeNHX4). Therefore, SlSOS2 seems to be involved in tomato salinity tolerance through regulation of Na(+) extrusion from the root, active loading of Na(+) into the xylem and Na(+) and K(+) compartmentalization.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Potássio/metabolismo , Tolerância ao Sal , Sódio/metabolismo , Solanum lycopersicum/genética , Proteínas de Transporte/metabolismo , Teste de Complementação Genética , Transporte de Íons , Solanum lycopersicum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salinidade , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Vacúolos/metabolismo , Xilema/metabolismo
9.
Plant Cell Environ ; 35(8): 1467-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22390672

RESUMO

The Ca(2+)-dependent SOS pathway has emerged as a key mechanism in the homeostasis of Na(+) and K(+) under saline conditions. We have identified and functionally characterized the gene encoding the calcineurin-interacting protein kinase of the SOS pathway in tomato, SlSOS2. On the basis of protein sequence similarity and complementation studies in yeast and Arabidopsis, it can be concluded that SlSOS2 is the functional tomato homolog of Arabidopsis AtSOS2 and that SlSOS2 operates in a tomato SOS signal transduction pathway. The biotechnological potential of SlSOS2 to provide salt tolerance was evaluated by gene overexpression in tomato (Solanum lycopersicum L. cv. MicroTom). The better salt tolerance of transgenic plants relative to non-transformed tomato was shown by their faster relative growth rate, earlier flowering and higher fruit production when grown with NaCl. The increased salinity tolerance of SlSOS2-overexpressing plants was associated with higher sodium content in stems and leaves and with the induction and up-regulation of the plasma membrane Na(+)/H(+) (SlSOS1) and endosomal-vacuolar K(+), Na(+)/H(+) (LeNHX2 and LeNHX4) antiporters, responsible for Na(+) extrusion out of the root, active loading of Na(+) into the xylem, and Na(+) and K(+) compartmentalization.


Assuntos
Adaptação Fisiológica , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Sais , Solanum lycopersicum/fisiologia , Arabidopsis/genética , Teste de Complementação Genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Plant Signal Behav ; 4(10): 973-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19826225

RESUMO

Maintaining a high K(+)/Na(+) ratio in the cell cytosol, along with the transport processes implicated in the xylem and phloem loading/unloading of Na(+) in plants (long-distance transport) are key aspects in plant salt tolerance. The Ca(2+)-dependent SOS pathway regulating Na(+) and K(+) homeostasis and long-distance Na(+) transport has been reported in Arabidopsis. However, Arabidopsis might not be the best model to analyze the involvement of the SOS pathway in long-distance Na(+) transport due to the very short stem of these plants which do not allow a precise dissection of the relative content of Na(+) in stem versus leaf. This separation would be critical to assess the role of SOS1 in xylem loading/unloading, Na(+) export by roots, retention in stems and the differential distribution/accumulation in old leaves. Towards this goal, tomato might represent a superior model due to its anatomical structure and agricultural significance. We recently demonstrated the key role played by the plasma membrane Na(+)/H(+) antiporter SlSOS1 in salt tolerance in tomato by maintaining ion homeostasis under salinity stress and in the partitioning of Na(+) in plant organs.

11.
Plant Cell Environ ; 32(7): 904-16, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19302170

RESUMO

We have identified a plasma membrane Na(+)/H(+) antiporter gene from tomato (Solanum lycopersicum), SlSOS1, and used heterologous expression in yeast to confirm that SlSOS1 was the functional homolog of AtSOS1. Using post-transcriptional gene silencing, we evaluated the role played by SlSOS1 in long-distance Na(+) transport and salt tolerance of tomato. Tomato was used because of its anatomical structure, more complex than that of Arabidopsis, and its agricultural significance. Transgenic tomato plants with reduced expression of SlSOS1 exhibited reduced growth rate compared to wild-type (WT) plants in saline conditions. This sensitivity correlated with higher accumulation of Na(+) in leaves and roots, but lower contents in stems of silenced plants under salt stress. Differential distribution of Na(+) and lower net Na(+) flux were observed in the xylem sap in the suppressed plants. In addition, K(+) concentration was lower in roots of silenced plants than in WT. Our results demonstrate that SlSOS1 antiporter is not only essential in maintaining ion homeostasis under salinity, but also critical for the partitioning of Na(+) between plant organs. The ability of tomato plants to retain Na(+) in the stems, thus preventing Na(+) from reaching the photosynthetic tissues, is largely dependent on the function of SlSOS1.


Assuntos
Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Plantas/genética , Plantas Tolerantes a Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Xilema/metabolismo
12.
FEBS Lett ; 576(1-2): 266-70, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15474049

RESUMO

To investigate the effects of calcineurin expression on cellular ion homeostasis in plants, we have obtained a transgenic cell culture of tomato, expressing constitutively activated yeast calcineurin. Transgenic cells exhibited reduced growth rates and proton extrusion activity in vivo. We show that reduction of plasma membrane H+-ATPase activity by expression of calcineurin is the basis for the observed phenotypes. Transgenic calli and cell suspensions displayed also increased salt tolerance and contained slightly higher Ca2+ and K+ levels. This demonstrates that calcineurin can modulate ion homeostasis in plants as it does in yeast by affecting the activity of primary ion transporters.


Assuntos
Calcineurina/metabolismo , Membrana Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , ATPases Translocadoras de Prótons/metabolismo , Células Cultivadas , Regulação para Baixo , Íons/análise , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Desenvolvimento Vegetal , Plantas Geneticamente Modificadas
13.
J Biol Chem ; 278(25): 22453-9, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12695519

RESUMO

In this study we have identified the first plant K+/H+ exchanger, LeNHX2 from tomato (Lycopersicon esculentum Mill. cv. Moneymaker), which is a member of the intracellular NHX exchanger protein family. The LeNHX2 protein, belonging to a subfamily of plant NHX proteins closely related to the yeast NHX1 protein, is abundant in roots and stems and is induced in leaves by short term salt or abscisic acid treatment. LeNHX2 complements the salt- and hygromycin-sensitive phenotype caused by NHX1 gene disruption in yeast, but affects accumulation of K+ and not Na+ in intracellular compartments. The LeNHX2 protein co-localizes with Prevacuolar and Golgi markers in a linear sucrose gradient in both yeast and plants. A histidine-tagged version of this protein could be purified and was shown to catalyze K+/H+ exchange but only minor Na+/H+ exchange in vitro. These data indicate that proper functioning of the endomembrane system relies on the regulation of K+ and H+ homeostasis by K+/H+ exchangers.


Assuntos
Antiportadores de Potássio-Hidrogênio/metabolismo , Potássio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Fracionamento Celular , Complexo de Golgi/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Antiportadores de Potássio-Hidrogênio/química , Antiportadores de Potássio-Hidrogênio/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
14.
New Phytol ; 156(3): 409-415, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33873571

RESUMO

• The effects of salt stress and adaptation on salicylic acid (SA) content and on antioxidant and lipoxygenase (LOX) enzyme activities were studied in tomato (Lycopersicon esculentum cv. Pera) cells. • NaCl-adapted cells were obtained from calli adapted to 100 mm NaCl by successive subcultures in medium supplemented with 100 mm NaCl. Salt stress treatments consisted of the addition of 100 mm NaCl to cells. • Adapted cells contained a lower concentration of SA than unadapted cells. The lower manganese-containing superoxide dismutase (Mn-SOD) and LOX activities as well as the higher glutathione reductase (GR) and ascorbate peroxidase (APX) activities in adapted cells than in unadapted cells could be correlated with the development of salt adaptation. Salt stress increased APX and LOX activities as well as lipid peroxidation in unadapted cells and increased Mn-SOD activity in both types of cells. Application of 200 µm SA + 100 mm NaCl inhibited APX activity in both unadapted and adapted cells, induced the Mn-SOD in adapted cells and increased lipid peroxidation in unadapted cells. • Our data indicate that adaptation of tomato cells to NaCl results in a higher tolerance to NaCl-induced oxidative stress and suggest a role for SA in this response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...