Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686795

RESUMO

Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.


Assuntos
Di-Hidrouracila Desidrogenase (NADP) , Elementos Facilitadores Genéticos , Epigênese Genética , Fluoruracila , Humanos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Fluoruracila/farmacologia , Fluoruracila/metabolismo , Mutação em Linhagem Germinativa
2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961517

RESUMO

Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

3.
Behav Brain Res ; 454: 114626, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37595756

RESUMO

Testosterone and its metabolites facilitate male-typical social behaviors in sexually experienced animals. The metabolite estradiol acts on estrogen receptors (ERs) within the bed nucleus of the stria terminalis (BNST) to facilitate socio-sexual behaviors. While circulating testosterone does not increase in naïve males, aromatase-expressing neurons within the BNST of naïve males are necessary for sex recognition, suggesting that local estradiol production may be responsible. In the present study, we examined ERɑ-immunoreactive (ir) cell number within the brain of sexually naïve male rats 24 h after an encounter with a novel animal. As expected, males investigated females more than males. Additionally, males that encountered females had fewer ERɑ-ir cells within both anterior and posterior BNST compared to those who encountered a novel male or a non-social control. There were no changes within the AVPV, MPN, or MeA. The decrease in ERɑ-ir cell number within the posterior BNST only occurred in males that encountered estrus females whereas the decrease in the anterior BNST occurred only in males that encountered non-estrus females. Additionally, anogenital investigations were correlated with fewer ERɑ-ir cells in the posterior BNST, while cage sniffing correlated with the number ERɑ-ir cells in the anterior BNST. There were no differences in serum testosterone 45 min or 24 h after the encounter, suggesting changes in ERɑ were due to local changes in estradiol levels. Our results expand upon previous research regarding the role of estradiol within the subregions of the BNST in naïve male rat socio-sexual behavior.


Assuntos
Receptor alfa de Estrogênio , Núcleos Septais , Feminino , Masculino , Animais , Ratos , Receptores de Estrogênio , Estradiol , Testosterona
4.
Life (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947925

RESUMO

Compatible osmolytes are a broad class of small organic molecules employed by living systems to combat environmental stress by enhancing the native protein structure. The molecular features that make for a superior biopreservation remain elusive. Through the use of time-resolved and steady-state spectroscopic techniques, in combination with molecular simulation, insight into what makes one molecule a more effective compatible osmolyte can be gained. Disaccharides differing only in their glycosidic bonds can exhibit different degrees of stabilization against thermal denaturation. The degree to which each sugar is preferentially excluded may explain these differences. The present work examines the biopreservation and hydration of trehalose, maltose, and gentiobiose.

5.
J Org Chem ; 86(15): 10724-10746, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34236859

RESUMO

Synthetic methodology utilizing two aryne intermediates (i.e., a formal benzdiyne) enables the rapid generation of structurally complex molecules with diverse functionality. This report describes the sequential generation of two ortho-benzyne intermediates for the synthesis of 2,3-disubstituted aryl phosphonates. Aryl phosphonates have proven useful in medicinal chemistry and materials science, and the reported methodology provides a two-step route to functionally dense variants by way of 3-phosphonyl benzyne intermediates. The process begins with regioselective trapping of a 3-trifloxybenzyne intermediate by an O-silyl phosphite in an Abramov-like reaction to bond the strained Csp carbons with phosphorus and silicon. Standard aryne-generating conditions follow to convert the resulting 2-silylphenyl triflate into a 3-phosphonyl benzyne, which readily reacts with numerous aryne trapping reactants to form a variety of 2,3-difunctionalized aryl phosphonate products. DFT computational studies shed light on important mechanistic details and revealed that 3-phosphonyl benzynes are highly polarizable. Specifically, the distortion in the internal bond angles at each of the Csp atoms was strongly influenced by both the electronegativity of the phosphonate ester groups as well as the dielectric of the computational solvation model. These effects were verified experimentally as the regioselectivity of benzyl azide trapping increased with more electronegative esters and/or increasingly polar solvents. Conversely, replacing the conventional solvent, acetonitrile, with nonpolar alternatives provided attenuated or even inverted selectivities. Overall, these studies showcase new reactivity of benzyne intermediates and extend the aryne relay methodology to include organophosphonates. Furthermore, this work demonstrates that the regioselectivity of aryne trapping reactions could be tuned by simply changing the solvent.


Assuntos
Derivados de Benzeno , Estrutura Molecular , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...