Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392748

RESUMO

This paper investigates the effect of GaAsBi strain reduction layers (SRLs) on InAs QDs with different Bi fluxes to achieve nanostructures with improved temperature stability. The SRLs are grown at a lower temperature (370 °C) than the usual capping temperature for InAs QDs (510 °C). The study finds that GaAs capping at low temperatures reduces QD decomposition and leads to larger pyramidal dots but also increases the threading dislocation (TD) density. When adding Bi to the capping layer, a significant reduction in TD density is observed, but unexpected structural changes also occur. Increasing the Bi flux does not increase the Bi content but rather the layer thickness. The maximum Bi content for all layers is 2.4%. A higher Bi flux causes earlier Bi incorporation, along with the formation of an additional InGaAs layer above the GaAsBi layer due to In segregation from QD erosion. Additionally, the implementation of GaAsBi SRLs results in smaller dots due to enhanced QD decomposition, which is contrary to the expected function of an SRL. No droplets were detected on the surface of any sample, but we did observe regions of horizontal nanowires within the epilayers for the Bi-rich samples, indicating nanoparticle formation.

2.
Small ; 20(7): e2305865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798672

RESUMO

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top-down approaches to their fabrication, such as exfoliation of bulk crystals by "scotch-tape," are widely used, but have limited prospects for precise engineering of functionalities and scalability. Here, a bottom-up technique based on epitaxy is used to demonstrate high-quality, wafer-scale 2SEM based on the wide band gap gallium selenide (GaSe) compound. GaSe layers of well-defined thickness are developed using a bespoke facility for the epitaxial growth and in situ studies of 2SEM. The dominant centrosymmetry and stacking of the individual van der Waals layers are verified by theory and experiment; their optical anisotropy and resonant absorption in the UV spectrum are exploited for photon sensing in the technological UV-C spectral range, offering a scalable route to deep-UV optoelectronics.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903684

RESUMO

For optoelectronic devices from the near to the far infrared, the advantages of using ultrathin III-Sb layers as quantum wells or in superlattices are well known. However, these alloys suffer from severe surface segregation problems, so that the actual profiles are very different from the nominal ones. Here, by inserting AlAs markers within the structure, state-of-the-art transmission electron microscopy techniques were used to precisely monitor the incorporation/segregation of Sb in ultrathin GaAsSb films (from 1 to 20 monolayers (MLs)). Our rigorous analysis allows us to apply the most successful model for describing the segregation of III-Sb alloys (three-layer kinetic model) in an unprecedented way, limiting the number of parameters to be fitted. The simulation results show that the segregation energy is not constant throughout the growth (which is not considered in any segregation model) but has an exponential decay from 0.18 eV to converge asymptotically towards 0.05 eV. This explains why the Sb profiles follow a sigmoidal growth model curve with an initial lag in Sb incorporation of 5 MLs and would be consistent with a progressive change in surface reconstruction as the floating layer is enriched.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889728

RESUMO

The use of thin AlA capping layers (CLs) on InAs quantum dots (QDs) has recently received considerable attention due to improved photovoltaic performance in QD solar cells. However, there is little data on the structural changes that occur during capping and their relation to different growth conditions. In this work, we studied the effect of AlA capping growth rate (CGR) on the structural features of InAs QDs in terms of shape, size, density, and average content. As will be shown, there are notable differences in the characteristics of the QDs upon changing CGR. The Al distribution analysis in the CL around the QDs was revealed to be the key. On the one hand, for the lowest CGR, Al has a homogeneous distribution over the entire surface, but there is a large thickening of the CL on the sides of the QD. As a result, the QDs are lower, lenticular in shape, but richer in In. On the other hand, for the higher CGRs, Al accumulates preferentially around the QD but with a more uniform thickness, resulting in taller QDs, which progressively adopt a truncated pyramidal shape. Surprisingly, intermediate CGRs do not improve either of these behaviors, resulting in less enriched QDs.

5.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458076

RESUMO

Recently, thin AlAs capping layers (CLs) on InAs quantum dot solar cells (QDSCs) have been shown to yield better photovoltaic efficiency compared to traditional QDSCs. Although it has been proposed that this improvement is due to the suppression of the capture of photogenerated carriers through the wetting layer (WL) states by a de-wetting process, the mechanisms that operate during this process are not clear. In this work, a structural analysis of the WL characteristics in the AlAs/InAs QD system with different CL-thickness has been made by scanning transmission electron microscopy techniques. First, an exponential decline of the amount of InAs in the WL with the CL thickness increase has been found, far from a complete elimination of the WL. Instead, this reduction is linked to a higher shield effect against QD decomposition. Second, there is no compositional separation between the WL and CL, but rather single layer with a variable content of InAlGaAs. Both effects, the high intermixing and WL reduction cause a drastic change in electronic levels, with the CL making up of 1-2 monolayers being the most effective configuration to reduce the radiative-recombination and minimize the potential barriers for carrier transport.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999574

RESUMO

Superlattice structures (SLs) with type-II (GaAsSb/GaAsN) and -I (GaAsSbN/GaAs) band alignments have received a great deal of attention for multijunction solar cell (MJSC) applications, as they present a strongly intensified luminescence and a significant external quantum efficiency (EQE), with respect to the GaAsSbN bulk layers. Despite the difficulties in characterizing the distribution of N in dilute III-V nitride alloys, in this work we have obtained N-compositional mappings before and after rapid thermal annealing (RTA) in both types of structures, by using a recent methodology based on the treatment of different scanning transmission electron microscopy (STEM) imaging configurations. Texture analysis by gray level co-occurrence matrixes (GLCM) and the measurement of the degree of clustering are used to compare and evaluate the compositional inhomogeneities of N. Comparison with the Sb maps shows that there is no spatial correlation between the N and Sb distributions. Our results reveal that a better homogeneity of N is obtained in type-I SLs, but at the expense of a higher tendency of Sb agglomeration, and the opposite occurs in type-II SLs. The RTA treatments improve the uniformity of N and Sb in both designs, with the annealed sample of type-II SLs being the most balanced structure for MJSCs.

7.
Sci Rep ; 6: 28459, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350322

RESUMO

The built-in piezoelectric fields in group III-nitrides can act as road blocks on the way to maximizing the efficiency of opto-electronic devices. In order to overcome this limitation, a proper characterization of these fields is necessary. In this work nano-beam electron diffraction in scanning transmission electron microscopy mode has been used to simultaneously measure the strain state and the induced piezoelectric fields in a GaN/AlN multiple quantum well system.

8.
Nanotechnology ; 26(40): 405702, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26377736

RESUMO

We present the mapping of the plasmonic properties of gold nanoparticles that are embedded in a TiO2 thin film deposited over two different substrates, glass and silicon. An improved electron energy-loss spectroscopy (EELS) imaging technique was used to extract plasmon maps with nanometre resolution. Several representative cases of randomly dispersed NPs have been examined to carefully evaluate surrounding effects on the optical response of such nanostructured material. Data were compared to analytical calculations and showed good agreement. These results validate previous structural and far-field optical results and provide a clear description of the optical phenomena that take place at a nanometre scale in these materials. They are of primary importance for enlightening the way to the fabrication of thin film materials including metallic nanostructures for photovoltaic applications.

9.
Microsc Microanal ; 21(4): 994-1005, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26123063

RESUMO

We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.

10.
Sci Rep ; 5: 10783, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26027718

RESUMO

ZnO microrods were grown by laser assisted flow deposition technique in order to study their luminescence behaviour in the near band edge spectral region. Transmission electron microscopy analysis put in evidence the high crystallinity degree and microrod's compositional homogeneity. Photoluminescence revealed a dominant 3.31 eV emission. The correlation between this emission and the presence of surface states was investigated by performing plasma treatments with hydrogen and nitrogen. The significant modifications in photoluminescence spectra after the plasma treatments suggest a connexion between the 3.31 eV luminescence and the surface related electronic levels.

11.
Microsc Microanal ; 20(4): 1254-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24698205

RESUMO

A study by electron microscopy techniques of the structural and compositional properties of Al x Ga1-x N/GaN nanowire (NW) heterostructures on Si(111) is presented. Al x Ga1-x N depositions grown without catalyst by plasma-assisted molecular beam epitaxy were designed to form NWs in the range of 0.20

12.
Nanoscale Res Lett ; 8(1): 162, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23570658

RESUMO

The effects of low-energy (≤2 kV) Ar+ irradiation on the optical and structural properties of zinc oxide (ZnO) nanowires (NWs) grown by a simple and cost-effective low-temperature technique were investigated. Both photoluminescence spectra from ZnO NW-coated films and cathodoluminescence analysis of individual ZnO NWs demonstrated obvious evidences of ultraviolet/visible luminescent enhancement with respect to irradiation fluence. Annihilation of the thinner ZnO NWs after the ion bombardment was appreciated by means of high-resolution scanning electron microscopy and transmission electron microscopy (TEM), which results in an increasing NW mean diameter for increasing irradiation fluences. Corresponding structural analysis by TEM pointed out not only significant changes in the morphology but also in the microstructure of these NWs, revealing certain radiation-sensitive behavior. The possible mechanisms accounting for the decrease of the deep-level emissions in the NWs with the increasing irradiation fluences are discussed according to their structural modifications.

13.
J Nanosci Nanotechnol ; 12(8): 6774-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962821

RESUMO

This paper reports the formation and characterization of spherical GaAs quantum dots obtained by nanosecond pulsed laser ablation in a liquid (ethanol or methanol). The produced bare GaAs nanoparticles demonstrate rather narrow size distribution which depends on the applied laser power density (from 4.25 to 13.9 J/cm2 in our experiments) and is as low as 2.5 nm for the highest power used. The absolute value of the average diameter also decreases significantly, from 13.7 to 8.7 nm, as the laser power increases in this interval. Due to the narrow nanoparticle size dispersion achieved at the highest laser powers two absorption band edges are clearly distinguishable at about 1.72 and 3.15 eV which are ascribed to E0 and E1 effective optical transitions, respectively. A comparison of the energies with those known for bulk GaAs allows one to conclude that an average diameter of the investigated GaAs nanoparticles is close to 10 nm, i.e., they are quantum dots. High resolution transmission electron microscopy (HRTEM) images show that the bare GaAs nanoparticles are nanocrystalline, but many of them exhibit single/multiple twin boundary defects or even polycrystallinity. The formation of the GaAs crystalline core capped with a SiO2 shell was demonstrated by HRTEM and energy dispersive X-ray (EDX) spectroscopy. Effective band edges can be better distinguished in SiO2 capped nanoparticles than in bare ones, In both cases the band edges are correlated with size quantum confinement effect.

14.
J Nanosci Nanotechnol ; 8(7): 3422-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19051889

RESUMO

We determine the compositional distribution with atomic column resolution in a horizontal nanowire from the analysis of aberration-corrected high resolution Z-contrast images. The strain field in a layer capping the analysed nanowire is determined by anisotropic elastic theory from the resulting compositional map. The reported method allows preferential nucleation sites for epitaxial nanowires to be predicted with high spatial resolution, as required for accurate tuning of desired optical properties. The application of this method has been exemplified in this work for stacked InAs(P) horizontal nanowires grown on InP separated by 3 nm thick InP layers, but we propose it as a general method to be applied to other stacked nano-objects.


Assuntos
Nanopartículas/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Anisotropia , Cristalização , Análise de Elementos Finitos , Índio/química , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Contraste de Fase , Nanoestruturas/química , Nanofios/química , Fosfinas/química , Temperatura
15.
Microsc Microanal ; 13(5): 320-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17900381

RESUMO

In this article a method for determining errors of the strain values when applying strain mapping techniques has been devised. This methodology starts with the generation of a thickness/defocus series of simulated high-resolution transmission electron microscopy images of InAsxP1-x/InP heterostructures and the application of geometric phase. To obtain optimal defocusing conditions, a comparison of different defocus values is carried out by the calculation of the strain profile standard deviations among different specimen thicknesses. Finally, based on the analogy of real state strain to a step response, a characterization of strain mapping error near an interface is proposed.

16.
Ultramicroscopy ; 107(12): 1186-93, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17391848

RESUMO

Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...