Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837187

RESUMO

GaN cap layer with different thicknesses was grown on each InGaN well layer during MOCVD growth for InGaN/GaN multiple quantum well (MQW) samples to study the influence of the cap layer on the photoluminescence (PL) characteristics of MQWs. Through the temperature-dependent (TD) PL spectra, it was found that when the cap layer was too thick, the localized states of the quantum wells were relatively non-uniform. The thicker the well layer, the worse the uniformity of the localized states. Furthermore, through micro-area fluorescence imaging tests, it was found that when the cap layer was too thick, the luminescence quality of the quantum well was worse. In summary, the uniformity of the localized states in the quantum wells and the luminescence characteristics of the quantum wells could be improved when a relatively thin cap layer of the quantum well was prepared during the growth. These results could facilitate high efficiency QW preparation, especially for green LEDs.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144901

RESUMO

In this paper, the photoluminescence (PL) properties and surface morphology of InGaN/GaN multiple quantum well (MQW) structures with the hydrogen (H2) heat treatment of InGaN are investigated to elucidate the effect of hydrogen on the structure and surface of the MQWs. The experimental results show that the H2 heat treatment on the as-grown MQWs may lead to the decomposition of InGaN and the formation of inhomogeneous In clusters. The atomic force microscope (AFM) study indicates that although the surface roughness of the uncapped samples increases after H2 treatment, the V-defects are suppressed. Moreover, the luminescence efficiency of the MQWs can be effectively improved by growing a GaN cap layer with an appropriate thickness on the top of the MQWs, which can reduce the effects of the H2 atmosphere and high temperature on the MQWs. In addition, a morphologic transformation from step bunching to shallow steps occurs and a much smoother surface can be obtained when a thicker cap layer is adopted.

3.
Nanoscale Res Lett ; 16(1): 161, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727236

RESUMO

In this work, three GaN-based multiple quantum well (MQW) samples are grown to investigate the growth techniques of high-quality MQWs at low temperature (750 °C). Instead of conventional temperature ramp-up process, H2/NH3 gas mixture was introduced during the interruption after the growth of InGaN well layers. The influence of hydrogen flux was investigated. The cross-sectional images of MQW via transmission electron microscope show that a significant atomic rearrangement process happens during the hydrogen treatment. Both sharp interfaces of MQW and homogeneous indium distribution are achieved when a proper proportion of hydrogen was used. Moreover, the luminescence efficiency is improved strongly due to suppressed non-radiative recombination process and a better homogeneity of MQWs. Such kind of atomic rearrangement process is mainly caused by the larger diffusion rate of gallium and indium adatoms in H2/NH3 mixed gas, which leads to a lower potential barrier energy to achieve thermodynamic steady state. However, when excessive hydrogen flux is introduced, the MQW will be partly damaged, and the luminescence performance will deteriorate.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923643

RESUMO

An increase of integrated photoluminescence (PL) intensity has been observed in a GaN-based multiple quantum wells (MQWs) sample. The integrated intensity of TDPL spectra forms an anomalous variation: it decreases from 30 to 100 K, then increases abnormally from 100 to 140 K and decreases again when temperature is beyond 140 K. The increased intensity is attributed to the electrons and holes whose distribution are spatial non-equilibrium distributed participated in the radiative recombination process and the quantum barrier layers are demonstrated to be the source of non-equilibrium distributed carriers. The temperature dependence of this kind of spatial non-equilibrium carriers' dynamics is very different from that of equilibrium carriers, resulting in the increased emission efficiency which only occurs from 100 to 140 K. Moreover, the luminescence efficiency of MQWs with non-equilibrium carriers is much higher than that without non-equilibrium carriers, indicating the high luminescence efficiency of GaN-based LEDs may be caused by the non-equilibrium distributed carriers. Furthermore, a comparison analysis of MQWs sample with and without hydrogen treatment further demonstrates that the better quantum well is one of the key factors of this anomalous phenomenon.

5.
Opt Express ; 29(3): 3685-3693, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770963

RESUMO

Yellow Luminescence (YL) band and blue luminescence (BL) band in a studied unintentionally doped GaN sample show a transient behaviour where the observed luminescence intensities change with the exposure time of the sample under 325 nm laser beam excitation at 10-300 K. Such an intensity variation is accompanied with a red-shift for YL peak at 10-140 K and one for BL peak at 140 K. We propose that such behaviours are related to the chemical transformations of YL-related CN and CNON defects, and BL-related CN-Hi and CNON-Hi defects during the exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...