Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28358290

RESUMO

The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.


Assuntos
Carvão Vegetal/química , Modelos Teóricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Amitriptilina/análise , Amitriptilina/química , Etilenoglicóis/análise , Etilenoglicóis/química , Substâncias Húmicas/análise , Cinética , Porosidade , Salicilatos/análise , Salicilatos/química , Poluentes Químicos da Água/química , Qualidade da Água
2.
J Hazard Mater ; 282: 224-32, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24953706

RESUMO

The ozonation of 1H-benzotriazole (BZ) and 3-methylindole (ML), two emerging contaminants that are frequently present in aquatic environments, was investigated. The experiments were performed with the contaminants (1µM) dissolved in ultrapure water. The kinetic study led to the determination of the apparent rate constants for the ozonation reactions. In the case of 1H-benzotriazole, these rate constants varied from 20.1 ± 0.4M(-1)s(-1) at pH=3 to 2143 ± 23 M(-1)s(-1) at pH=10. Due to its acidic nature (pKa=8.2), the degree of dissociation of this pollutant was determined at every pH of work, and the specific rate constants of the un-dissociated and dissociated species were evaluated, being the values of these rate constants 20.1 ± 2.0 and 2.0 ± 0.3 × 10(3)M(-1)s(-1), respectively. On the contrary, 3-methylindole does not present acidic nature, and therefore, it can be proposed an average value for its rate constant of 4.90 ± 0.7 × 10(5)M(-1)s(-1) in the whole pH range 3-10. Further experiments were performed to identify the main degradation byproducts (10 mg L(-1) of contaminants, 0.023 gh(-1) of ozone). Up to 8 intermediates formed in the ozonation of 3-methylindole were identified by LC-TOFMS, while 6 intermediates were identified in the ozonation of 1H-benzotriazole. By considering these intermediate compounds, the reaction mechanisms were proposed and discussed. Finally, evaluated rate constants allowed to predict and modeling the oxidation of these micropollutants in general aquatic systems.


Assuntos
Oxidantes/química , Ozônio/química , Escatol/química , Triazóis/química , Poluentes Químicos da Água/química , Cinética , Modelos Teóricos , Oxirredução
3.
Water Res ; 47(2): 870-80, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218246

RESUMO

The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H2O2 process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.


Assuntos
Modelos Químicos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água/química , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Anti-Infecciosos Locais/análise , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/toxicidade , Antidepressivos Tricíclicos/análise , Antidepressivos Tricíclicos/química , Antidepressivos Tricíclicos/toxicidade , DEET/análise , DEET/química , Diclorofeno/análogos & derivados , Diclorofeno/análise , Sequestradores de Radicais Livres/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Repelentes de Insetos/análise , Repelentes de Insetos/química , Repelentes de Insetos/toxicidade , Cinética , Nortriptilina/análise , Nortriptilina/química , Nortriptilina/toxicidade , Oxidantes/química , Oxirredução , Fotólise , Escatol/toxicidade , Triazóis/análise , Triazóis/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , terc-Butil Álcool/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-23030395

RESUMO

Five emerging contaminants (1-H-Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole, and Nortriptyline HCl), frequently found in surface waters and wastewaters, were selected to be photooxidized in several water matrices. Previous degradation experiments of these compounds individually dissolved in ultra pure water were performed by using UV radiation at 254 nm and the Fenton's reagent. These oxidation systems allowed the determination of the quantum yields and the rate constants for the radical reaction between each compound and hydroxyl radicals. Later, the simultaneous photodegradation of mixtures of the selected ECs in several types of water (ultrapure water, reservoir water, and two effluents from WWTPs) was carried out and a kinetic study was conducted. A model is proposed for the ECs elimination, and the theoretically calculated concentrations with this model agreed well with the experimental results obtained, which confirmed that it constitutes an excellent tool to predict the elimination of these compounds in waters.


Assuntos
Peróxido de Hidrogênio/química , Raios Ultravioleta , Purificação da Água/métodos , Fotólise
5.
Artigo em Inglês | MEDLINE | ID: mdl-22375535

RESUMO

The elimination of five selected pharmaceuticals (amoxicillin, hydrochlorothiazide, metoprolol, naproxen and phenacetin) dissolved in different water systems (two natural water matrices and a secondary effluent) was carried out by sequential processes constituted by membrane filtration and chemical oxidation stages. Different configurations of those two stages were applied. In a first group, a pretreatment consisting in a membrane filtration (ultrafiltration or nanofiltration) was conducted; and the permeate and retentate effluents produced were afterwards treated by chemical oxidation, using ozone or chlorine. In a second group, the pretreatment consisted in a chemical oxidation stage (by using ozone, chlorine, O(3)/H(2)O(2), UV or UV/H(2)O(2)) followed by a nanofiltration process. The main objective of this set of experiments was the comparison of the efficiencies reached by using different systems and configurations in order to optimize the elimination of those pollutants from the selected water matrices. Results of removals and rejection coefficients for the five pharmaceuticals showed that the combined treatments involving UV radiation (254 nm monochromatic radiation during 30 min) followed by nanofiltration were very effective, with global removals over 80 % in most of the experiments. Ozonation (initial dose of 2.25 mg L(-1)) followed by nanofiltration also showed high levels of efficiency, with removals over 70 % in the permeate stream generated in experiments carried out with natural waters. The opposite sequence, nanofiltration followed by ozonation, reached removals over 97 % in the natural waters by using an ozone dose of 2.25 mg L(-1); and over 90 % in the secondary effluent with an initial ozone dose of 3.75 mg L(-1).


Assuntos
Membranas Artificiais , Preparações Farmacêuticas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Oxirredução
6.
Chemosphere ; 85(9): 1430-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21906777

RESUMO

The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.


Assuntos
Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Amoxicilina/química , Halogenação , Hidroclorotiazida/química , Concentração de Íons de Hidrogênio , Cinética , Metoprolol/química , Naproxeno/química , Fenacetina/química
7.
Water Res ; 44(14): 4158-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20605184

RESUMO

Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.


Assuntos
Água Doce/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Amoxicilina/química , Amoxicilina/isolamento & purificação , Halogenação , Concentração de Íons de Hidrogênio , Cinética , Metoprolol/química , Metoprolol/isolamento & purificação , Naproxeno/química , Naproxeno/isolamento & purificação , Preparações Farmacêuticas/isolamento & purificação , Fenacetina/química , Fenacetina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
8.
J Hazard Mater ; 177(1-3): 390-8, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20047792

RESUMO

Four UF membranes (denoted GH, GK, PT and PW with MWCO of 1000, 2000, 5000 and 20,000Da, respectively) and four NF membranes (denoted DL, CK, DK and HL, with an approximate MWCO of 150-300Da in all cases) were used for the filtration of an effluent generated in a municipal wastewater plant after a secondary treatment. The influence of the most important operating variables (nature and MWCO of the membranes, transmembrane pressure, tangential velocity, and temperature) on the permeate flux was widely discussed, and the resistances to the permeate flux were determined following the resistances in series model. Rejection coefficients for parameters that measure the global pollutant content of the effluent (chemical oxygen demand, total organic carbon, absorbance at 254nm, turbidity, total nitrogen and total phosphorus) were also evaluated, and the results revealed that both UF and NF are feasible options for the treatment of this effluent, yielding a permeate stream that can be reused in several applications. Finally, 28 pharmaceutical compounds were initially detected in this effluent, and their respective rejection coefficients were determined, with eliminations higher than 75% in the case of NF with the HL membrane. Therefore, it is concluded that NF is an excellent option for the removal of toxic pharmaceuticals in municipal wastewaters.


Assuntos
Conservação dos Recursos Naturais/métodos , Filtração/métodos , Resíduos Industriais/prevenção & controle , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Cidades , Preparações Farmacêuticas/análise , Pressão , Temperatura
9.
Water Res ; 43(2): 267-76, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18947854

RESUMO

Membrane filtration of four phenyl-urea herbicides (linuron, diuron, chlortoluron, and isoproturon) dissolved in ultrapure water was studied in a laboratory cross-flow device in batch concentration mode (with recycling of the retentate stream). Three UF (MWCO of 20 000, 5000 and 2000Da) and three NF (MWCO of 150-300Da) membranes were used. The influence of the main operating conditions (transmembrane pressure, tangential velocity, temperature, pH, and MWCO of the membranes) on the steady-state permeate fluxes and the retention factors of the phenyl-ureas was evaluated. The herbicide mass adsorbed onto the membranes was also determined, and the contribution of the fouling resistance to the total resistance to permeate flux was much lower than the inherent resistance of the clean membranes.


Assuntos
Herbicidas/química , Compostos de Fenilureia/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Temperatura , Fatores de Tempo , Ultrafiltração/instrumentação , Ultrafiltração/métodos
10.
J Hazard Mater ; 162(2-3): 1438-45, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18650003

RESUMO

Filtration experiments in batch concentration mode (with recycling of the retentate stream) of the cork processing wastewater were performed in laboratory filtration membrane equipment, by using four commercial membranes: two UF membranes with MWCO of 20,000 and 5000 Da, and two NF membranes with an approximate MWCO of 150-300 Da. The filtration experiments of the selected wastewater were performed by modifying the most important operating variables: transmembrane pressure, tangential velocity, temperature, and the nature and MWCO of the membranes. The evolution of the cumulative permeate volumes and permeate fluxes with processing time were analysed, and it was established that the steady-state permeate flux was reached for a volume retention factor of 2. The effect of the mentioned operating conditions on this steady-state permeate flux was discussed. The effectiveness of the filtration treatments was determined by the evaluation of the rejection coefficients for several parameters, which measure the global pollutant content of the effluent: COD, absorbance at 254 nm, tannic content, color, and ellagic acid. Finally, the resistances in series model was used for the evaluation of the resistances to the permeate flux, and it was concluded that the contribution to the total resistance of the fouling resistance (combined external plus internal) was higher than the inherent resistance of the clean membrane.


Assuntos
Membranas Artificiais , Nanotecnologia , Ultrafiltração/métodos , Poluentes da Água , Permeabilidade
11.
J Hazard Mater ; 165(1-3): 714-23, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19054613

RESUMO

Four phenyl-urea herbicides (linuron, diuron, chlortoluron and isoproturon) dissolved in a commercial mineral water and in reservoir water were subjected to nanofiltration (NF) processes in cross-flow laboratory equipment with recycling of the retentate stream. Three NF membranes of different nature, with molecual weigth cut-off (MWCO) in the range 150-300 Da, were used. The hydraulic permeabilities of the membranes were determined from filtration experiments of ultra-pure (UP) water. In the NF of the synthetic waters, the permeate fluxes were evaluated, the influence of the main operating conditions (transmembrane pressure, temperature, and MWCO of the membranes) on the steady-state permeate fluxes was established, and the different resistances found in the system, which are responsible of the flux declines, were deduced. The retention coefficients for each herbicide were also evaluated and discussed in view of the nature and characteristics of herbicides and membranes. Finally, the herbicides mass adsorbed on the membranes were also determined and the contribution of the adsorption mechanism to the global retention is pointed out.


Assuntos
Compostos de Fenilureia/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Abastecimento de Água , Adsorção , Filtração , Herbicidas/isolamento & purificação , Membranas Artificiais
12.
J Hazard Mater ; 153(1-2): 320-8, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17904287

RESUMO

Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 degrees C and pH 7 were determined to be 110.9, 0.004 and 191.6 M(-1) s(-1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L(-1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.


Assuntos
Clorfenvinfos/química , Clorpirifos/química , Diazinon/química , Inseticidas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfecção , Halogenação , Concentração de Íons de Hidrogênio , Oxirredução , Temperatura , Trialometanos/química
13.
J Hazard Mater ; 152(1): 373-80, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17693018

RESUMO

The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1microm, and three UF membranes with molecular weights cut-off of 300, 10, and 5kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.


Assuntos
Resíduos Industriais , Membranas Artificiais , Ozônio/química , Ultrafiltração/métodos , Poluentes da Água , Recuperação e Remediação Ambiental/métodos , Raios Ultravioleta
14.
Water Res ; 41(18): 4073-84, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17618669

RESUMO

Oxidation of four phenyl-urea herbicides (isoproturon, chlortoluron, diuron, and linuron) was studied by ozone at pH=2, and by a combination of O3/H2O2 at pH=9. These experiments allowed the determination of the rate constants for their reactions with ozone and OH radicals. For reactions with ozone, the following rate constants were obtained: 1.9 +/- 0.2, 16.5 +/- 0.6, 393.5 +/- 8.4, and 2191 +/- 259 M(-1) s(-1) for linuron, diuron, chlortoluron, and isoproturon, respectively. The rate constants for the reaction with OH radicals were (7.9 +/- 0.1) x 10(9) M(-1) s(-1) for isoproturon, (6.9 +/- 0.2) x 10(9) M(-1) s(-1) for chlortoluron, (6.6 +/- 0.1) x 10(5) M(-1) s(-1) for diuron, and (5.9 +/- 0.1) x 10(9) M(-1) s(-1) for linuron. Furthermore, the simultaneous ozonation of these selected herbicides in some natural water systems (a commercial mineral water, a groundwater, and surface water from a reservoir) was studied. The influence of operating conditions (initial ozone dose, nature of herbicides, and type of water systems) on herbicide removal efficiency was established, and the parameter Rct (proposed by Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci. Eng. 21, 239-260) was evaluated from simultaneous measurement of ozone and OH radicals. A kinetic model was proposed for the prediction of the elimination rate of herbicides in these natural waters, and application of this model revealed that experimental results and predicted values agreed fairly well. Finally, the partial contributions of direct ozone and radical pathways were evaluated, and the results showed that reaction with OH radicals was the major pathway for the oxidative transformation of diuron and linuron, even when conventional ozonation was applied, while for chlortoluron and isoproturon, direct ozonation was the major pathway.


Assuntos
Herbicidas/química , Modelos Teóricos , Ozônio/química , Compostos de Fenilureia/química , Água , Radical Hidroxila/química , Cinética
15.
J Hazard Mater ; 138(2): 278-87, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16839678

RESUMO

Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron>chlorotoluron>diuron>isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H2O2). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained.


Assuntos
Herbicidas , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Radical Hidroxila/química , Cinética , Modelos Químicos , Oxirredução , Fotoquímica , Raios Ultravioleta
16.
Artigo em Inglês | MEDLINE | ID: mdl-16319015

RESUMO

Acetovanillone [Ethanone, 1-(4-hydroxy-3-metoxyphenyl)] is one of the major pollutants that is present in the wastewater produced during the boiling of raw material in the cork industry. The oxidation of its aqueous solutions by monochromatic UV radiation alone and combined with hydrogen peroxide, Fenton's reagent and the photo-Fenton system has been investigated. In the single UV radiation process, the apparent rate constants and the quantum yields are determined, and in the UV/H2O2 combination, the additional efficiency in the oxidation process due to the presence of hydrogen peroxide is established. The influence of some operating variables, such as initial concentrations of H2O2 and Fe(II), as well as the pH, is discussed in the Fenton and photo-Fenton systems, and the partial contribution of the radical pathways to the global oxidation rates are evaluated. The rate constant for the reaction of acetovanillone with hydroxyl radicals is also determined by means of a competition kinetics model, its value being 5.62 x 10(9) M(-1)s(-1). Finally, chemical oxidation experiments of wastewaters generated in this industry were carried out by using the same advanced oxidation processes. Specifically, the elimination of acetovanillone in these effluents was determined, and the removal of the global organic pollutant content was also evaluated.


Assuntos
Acetofenonas/química , Radical Hidroxila/química , Modelos Químicos , Fotoquímica/métodos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Acetofenonas/análise , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Oxirredução , Espanha
17.
J Hazard Mater ; 126(1-3): 31-9, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16051431

RESUMO

Gallic acid (3,4,5-trihydroxybenzoic acid) is a major pollutant present in the wastewater generated in the boiling cork process, as well as in other wastewaters from food manufacturing industries. Its decay in aqueous solutions has been studied by the action of several oxidation systems: monochromatic UV radiation alone and combined with hydrogen peroxide, Fenton's reagent and the combination Fenton's reagent with UV radiation (photo-Fenton system). The influence of the pH is discussed and the quantum yields are determined in the UV radiation system. Also, the influence of operating variables (initial concentrations of H2O2 and Fe(II), and pH) is established in the Fenton's reaction. The apparent pseudo-first-order rate constants are evaluated in all the experiments conducted in order to compare the efficiency of each one of the processes. Increases in the degradation levels of gallic acid are obtained in the combined processes in relation to the single UV radiation system, due to reactions of the very reactive OH*. These improvements are determined in every process by calculating the partial contribution to the overall decomposition rate of the radical pathways. For the oxidant concentrations applied, the most effective process in removing gallic acid was found to be the photo-Fenton system. The rate constant for the reaction of gallic acid with OH was also determined by means of a competition kinetics model, being its value 11.0+/-0.1 x 10(9)l mol(-1)s(-1).


Assuntos
Ácido Gálico/química , Peróxido de Hidrogênio/química , Ferro/química , Raios Ultravioleta , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Oxirredução , Fotoquímica/métodos , Soluções , Água
18.
Artigo em Inglês | MEDLINE | ID: mdl-15991725

RESUMO

The ultrafiltration (UF) of aqueous solutions containing mixtures of three phenolic compounds (gallic acid, acetovanillone, and esculetin) was studied in a tangential UF laboratory system. These substances were selected as model pollutants present in the tannic fraction of the cork processing wastewaters. The two membranes used were a polyethersulfone membrane (Biomax5K) and a regenerated cellulose membrane (Ultracel5K), both with a molecular weight cut-off (MWCO) of 5000 Da. Previous experiments for the characterization of the membranes led to values for the water hydraulic permeability of 70.3 and 18.1 L/h x m2 x bar for the Biomax5K and Ultracel5K membranes, respectively. During the UF experiments, the permeate flow rate remained almost constant with processing time and the evolution of the pollutants concentrations varied depending on the nature of the membranes and the substances. The influence of the main operating variables (tansmembrane pressure and feed flow rate) on the permeate flux was established, and values for the apparent and intrinsic rejection coefficients were evaluated. Cork processing wastewater UF experiments were also conducted under similar operating conditions to those applied to the ultrapure water solutions. Removals of chemical oxygen demand, aromatic and tannic contents, and color were determined in these experiments, and the elimination of the three model compounds in the wastewater was also followed, with the evaluation of their apparent rejection coefficients.


Assuntos
Fenóis/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Filtração , Membranas Artificiais
19.
J Environ Sci Health B ; 39(3): 393-409, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15186029

RESUMO

The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Ácido 2-Metil-4-clorofenoxiacético/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ozônio/química , Raios Ultravioleta , Biodegradação Ambiental , Herbicidas/química , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Oxidantes Fotoquímicos/química , Oxirredução , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação
20.
Water Res ; 37(17): 4081-90, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12946889

RESUMO

Wastewaters generated in the cork processing industry were treated in continuous reactors by means of single treatments separately-a chemical ozonation and an activated sludge system-and then by both sequential processes-ozonation followed by aerobic degradation, and aerobic degradation followed by ozonation. The removals obtained in the ozonation alone were 12-54%, 65-81%, and 55-89% for the COD, total phenolics, and absorbance at 254 nm, respectively, while the consumed ozone yield ranged from 40% to 61%, and the biodegradability (BOD(5)/COD) varied from an initial 0.60 to final values between 0.68 and 0.93. The optimum hydraulic retention time and ozone partial pressure were 3 h and 3 kPa, respectively. The stoichiometric ratio was 0.56 g of organic substrate degraded per g of ozone consumed, while the rate constants obtained for the ozone disappearance and for the organic matter degradation were 4490 L g COD(-1) h(-1) and 1970 L g O(3)(-1)h(-1) respectively. The presence of hydrogen peroxide or UV radiation in addition to ozone increased the values of organic matter removal as well as the stoichiometric ratio and the rate constants. The aerobic treatment by the activated sludge system yielded COD removals between 13% and 37% for hydraulic retention times between 24 and 96 h, and the Contois model gave values of q(max)=0.14 g COD g VSS(-1)h(-1) and K(1)=22.6 g COD g VSS(-1) for the main kinetic parameters. The sequential processes increased the substrate removal efficiencies in comparison with the individual processes. These enhancements were greater in the aerobic degradation-ozonation sequence than in the ozonation-aerobic degradation sequence.


Assuntos
Oxidantes Fotoquímicos/química , Ozônio/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Reatores Biológicos , Resíduos Industriais , Modelos Teóricos , Phellodendron
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...