Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13332-13341, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524442

RESUMO

A novel protease inhibitor isolated from date palm Phoenix dactylifera(L.) flowers (PIDF) was purified and characterized. A heat and acidic treatment step followed by ethanol precipitation and reverse-phase high-performance chromatography was applied to purify this natural protease inhibitor to homogeneity with a single band of about 19 kDa. The stability study depicted that PIDF was fully stable at 40 °C and retained 65% of its initial activity after heating at 50 °C for 24 h. Its thermal stability at 70 °C was markedly enhanced by adding calcium, bovine serum albumin, and sorbitol as well as by metal divalent cations, especially Mg2+ and Hg2+. This protease inhibitor showed high inhibitory activity against therapeutic proteases, including pepsin, trypsin, chymotrypsin, and collagenase, and acted as a potent inhibitor of some commercial microbial proteases from Aspergillus oryzae, Bacillus. sp, and Bacillus licheniformis. Moreover, a potent antibacterial spectrum against Gram (+) and Gram (-) bacterial strains and an efficient antifungal effect were observed. Its cytotoxicity toward human colorectal cancer cell LoVo and HCT-116 lines suggested that PIDF could serve as a new therapeutic target inhibiting human colorectal cancer.

2.
Front Mol Biosci ; 11: 1365440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469182

RESUMO

Introduction: Cadmium (Cd) is a harmful heavy metal that results in many toxic issues. Urtica pilulifera showed potential pharmaceutical applications. This study investigated the possible ameliorative mechanism of Urtica pilulifera leaves extract (UPLE) against hepatotoxicity induced by cadmium chloride (CdCl2) in mice. Methods: In vitro phytochemical screening and the metal-chelating activity of UPLE were ascertained. Four groups of forty male mice were used (n = 10) as follows; Group 1 (G1) was a negative control. G2 was injected i.p., with UPLE (100 mg/kg b. wt) daily. G3 was injected i.p., with Cd (5 mg/kg b. wt) daily. G4 was injected with Cd as in G3 and with UPLE as in G2. On day 11, the body weight changes were evaluated, blood, and serum samples were collected for hematological and biochemical assessments. Liver tissues were used for biochemical, molecular, and histopathological investigations. Results: The results showed that UPLE contains promising secondary metabolites that considerably lessen the negative effects of Cd on liver. Furthermore, UPLE inhibited oxidative stress and inflammation; restored antioxidant molecules; and promoted nuclear-related factor-2 (Nrf-2) expression. Also, UPLE improved the histopathological alterations induced by Cd. Discussion: This study explored the beneficial role of UPLE treatment in Cd-induced liver injury through enhancing Nrf-2 signaling and antioxidant enzyme gene expression in the liver of mice. Therefore, UPLE could have valuable implications against hepatotoxicity induced by environmental cadmium exposure. Which can be used as a chelating agent against Cd.

3.
Toxins (Basel) ; 15(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999527

RESUMO

Fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, is one of the most common pollutants in natural foods and agricultural crops. It can cause chronic and severe health issues in humans and animals. The aim of this study was to evaluate the transgenerational effects of FB1 exposure on the structure and function of the kidneys in offspring. Virgin female Wistar rats were randomly divided into three groups: group one (control) received sterile water, and groups two and three were intragastrically administered low (20 mg/kg) and high (50 mg/kg) doses of FB1, respectively, from day 6 of pregnancy until delivery. Our results showed that exposure to either dose of FB1 caused histopathological changes, such as atrophy, hypercellularity, hemorrhage, calcification, and a decrease in the glomerular diameter, in both the first and second generations. The levels of the antioxidant markers glutathione, glutathione S-transferase, and catalase significantly decreased, while malondialdehyde levels increased. Moreover, autophagy was induced, as immunofluorescence analysis revealed that LC-3 protein expression was significantly increased in both generations after exposure to either dose of FB1. However, a significant decrease in methyltransferase (DNMT3) protein expression was observed in the first generation in both treatment groups (20 mg/kg and 50 mg/kg), indicating a decrease in DNA methylation as a result of early-life exposure to FB1. Interestingly, global hypomethylation was also observed in the second generation in both treatment groups despite the fact that the mothers of these rats were not exposed to FB1. Thus, early-life exposure to FB1 induced nephrotoxicity in offspring of the first and second generations. The mechanisms of action underlying this transgenerational effect may include oxidative stress, autophagy, and DNA hypomethylation.


Assuntos
Fumonisinas , Micotoxinas , Humanos , Ratos , Feminino , Animais , Micotoxinas/toxicidade , Metilação de DNA , Ratos Wistar , Fumonisinas/toxicidade , Estresse Oxidativo , Autofagia , DNA
4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37895863

RESUMO

Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.

5.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764293

RESUMO

Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.


Assuntos
Antineoplásicos , Viperidae , Animais , Humanos , Fosfolipases A2 do Grupo II , Arábia Saudita , Fosfolipases A2/farmacologia , Fosfolipases A2/química , Fosfolipases , Venenos de Víboras/farmacologia , Venenos de Víboras/química , Antineoplásicos/farmacologia
6.
Saudi J Biol Sci ; 30(9): 103772, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663395

RESUMO

This work describes the enzymatic transesterification of the oil extracted from SCGs for synthesis of biodiesel as a promising alternative to diesel fuels based on petroleum. Biocatalysts from various sources were tested for biodiesel synthesis using coffee oil among which CaCO3- immobilized Staphylococcus aureus and Bacillus stearothermophilus showed the highest conversion yields (61 ± 2.64% and 64.3 ± 1.53%, respectively) in 4 h. In further optimizing reaction parameters, methanol to oil molar ratio, biocatalyst quantity, water content, as well as incubation time and temperature markedly improved oil-to-biodiesel conversion up to 99.33 ± 0.57 % in a solvent free reaction after 12 h at 55 °C. A mixture of inexpensive CaCO3-immobilized bacterial lipases at a 1:1 ratio was the best environment-friendly catalyst for biofuel synthesis as well as the ideal trade-off between conversion and cost. Obtained coffee biodiesel remained stable beyond 40 days at ambient storage conditions and its chemical characteristics were comparable to those of other known biodiesels according to the European requirements (EN14214). Collectively, SCGs, after oil extraction, could be an ideal substrate for the production of an environment-friendly biodiesel by using appropriate mixture of CaCO3-immobilized lipases.

7.
PeerJ ; 11: e15488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334116

RESUMO

Background: Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives: This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method: Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results: Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion: This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism.


Assuntos
Transtorno do Espectro Autista , Feminino , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/induzido quimicamente , Roedores/metabolismo , Caracteres Sexuais , Doenças Neuroinflamatórias , Ácido Glutâmico/metabolismo
8.
Metabolites ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110206

RESUMO

Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.

9.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557867

RESUMO

Biodiesel is one of the important biofuels as an alternative to petroleum-based diesel fuels. In the current study, enzymatic transesterification reaction was carried out for the production of biodiesel from waste cooking oil (WCO) and experimental conditions were optimized, in order to reach maximum biodiesel yield. Bacillus stearothermophilus and Staphylococcus aureus lipase enzymes were individually immobilized on CaCO3 to be used as environmentally friendly catalysts for biodiesel production. The immobilized lipases exhibited better stability than free ones and were almost fully active after 60 days of storage at 4 °C. A significant biodiesel yield of 97.66 ± 0.57% was achieved without any pre-treatment and at 1:6 oil/methanol molar ratio, 1% of the enzyme mixture (a 1:1 ratio mixture of both lipase), 1% water content, after 24 h at 55 °C reaction temperature. The biocatalysts retained 93% of their initial activities after six cycles. The fuel and chemical properties such as the cloud point, viscosity at 40 °C and density at 15 °C of the produced biodiesel complied with international specifications (EN 14214) and, therefore, were comparable to those of other diesels/biodiesels. Interestingly, the resulting biodiesel revealed a linolenic methyl ester content of 0.55 ± 0.02% and an ester content of 97.7 ± 0.21% which is in good agreement with EN14214 requirements. Overall, using mixed CaCO3-immobilized lipases to obtain an environmentally friendly biodiesel from WCO is a promising and effective alternative for biodiesel production catalysis.


Assuntos
Biocombustíveis , Ésteres , Biocombustíveis/análise , Esterificação , Lipase/química , Enzimas Imobilizadas/metabolismo , Culinária , Óleos de Plantas
10.
Transl Neurosci ; 13(1): 292-300, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133749

RESUMO

This study aimed to evaluate the protective and therapeutic potency of bee pollen and probiotic mixture on brain intoxication caused by propionic acid (PPA) in juvenile rats. Five groups of six animals each, were used: the control group only receiving phosphate-buffered saline; the bee pollen and probiotic-treated group receiving a combination of an equal quantity of bee pollen and probiotic (0.2 kg/kg body weight); the PPA group being treated for 3 days with an oral neurotoxic dose of PPA (0.25 kg/kg body weight); the protective and therapeutic groups receiving bee pollen and probiotic mixture treatment right before and after the neurotoxic dose of PPA, respectively. The levels of interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor α, and interferon γ (IFN-γ) were investigated to evaluate the neuroinflammatory responses in brain tissues from different animal groups. The much higher IL-1ß, IL-8, and IFN-γ, as pro-inflammatory cytokines (P < 0.001), together with much lower IL-10, as anti-inflammatory cytokine (P < 0.001) compared to controls clearly demonstrated the neurotoxic effects of PPA. Interestingly, the mixture of bee pollen and probiotics was effective in alleviating PPA neurotoxic effects in both therapeutic and protective groups demonstrating highly significant changes in IL-1ß, IL-8, IL-10, and IFN-γ levels together with non-significant reduction in IL-6 levels compared to PPA-treated rats. Overall, our findings demonstrated a new approach to the beneficial use of psychobiotics presenting as bee pollen and probiotic combination in neuroinflammation through cytokine changes as a possible role of glial cells in gut-brain axis.

11.
Molecules ; 27(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014408

RESUMO

In this study, we will present an efficient and selective adsorbent for the removal of Cu(II) ions from aqueous solutions. The silica-based adsorbent is functionalized by 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde (SiN-imd-py) and the characterization was carried out by applying various techniques including FT-IR, SEM, TGA and elemental analysis. The SiN-imd-py adsorbent shows a good selectivity and high adsorption capacity towards Cu(II) and reached 100 mg/g at pH = 6 and T = 25 °C. This adsorption capacity is important compared to other similar adsorbents which are currently published. The adsorption mechanism, thermodynamics, reusability and the effect of different experimental conditions, such as contact time, pH and temperature, on the adsorption process, were also investigated. In addition, a theoretical study was carried out to understand the adsorption mechanism and the active sites of the adsorbent, as well as the stability of the complex formed and the nature of the bonds.


Assuntos
Dióxido de Silício , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Piridinas , Dióxido de Silício/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Poluentes Químicos da Água/química
12.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890189

RESUMO

Colorectal cancer oncogenesis is linked to dysbiosis, oxidative stress and overexpression of CDK2. The 4H-pyran scaffold is considered an antitumoral, antibacterial and antioxidant lead as well as a CDK2 inhibitor. Herein, certain 4H-pyran derivatives were evaluated as antibacterial, antioxidant and cytotoxic agents against HCT-116 cells. Derivatives 4g and 4j inhibited all the tested Gram-positive isolates, except for B. cereus (ATCC 14579), with lower IC50 values (µM) than ampicillin. In addition, 4g and 4j demonstrated the strongest DPPH scavenging and reducing potencies, with 4j being more efficient than BHT. In cell viability assays, 4d and 4k suppressed the proliferation of HCT-116 cells, with the lowest IC50 values being 75.1 and 85.88 µM, respectively. The results of molecular docking simulations of 4d and 4k, inhibitory kinase assays against CDK2, along with determination of CDK2 protein concentration and the expression level of CDK2 gene in the lysates of HCT-116 treated cells, suggested that these analogues blocked the proliferation of HCT-116 cells by inhibiting kinase activity and downregulating expression levels of CDK2 protein and gene. Moreover, 4d and 4k were found to induce apoptosis in HCT-116 cells via activation of the caspase-3 gene. Lastly, compounds 4g, 4j, 4d and 4k were predicted to comply with Lipinski's rule of five, and they are expected to possess excellent physiochemical and pharmacokinetic properties suitable for in vivo bioavailability, as predicted by the SwissADME web tool.

13.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807466

RESUMO

The main objective of the current study was the extraction, purification, and enzymatic characterization of a potent proteinaceous amylase inhibitor from Moringa oleifera. The antimicrobial potential and insecticide effects against C. maculates insect larvae were also studied. The α-amylase inhibitor was extracted in methanol (with an inhibitory activity of 65.6% ± 4.93). Afterwards, the inhibitor αAI.Mol was purified after a heat treatment at 70 °C for 15 min followed by one chromatographic step of Sephadex G-50. An apparent molecular weight of 25 kDa was analyzed, and the N-terminal sequence showed the highest identity level (89%) with the monomeric α-amylase inhibitor from Triticum dicoccoides. αAI.Mol was found to tolerate pH values ranging from 5.0 to 11.0 and showed maximal activity at pH 9.0. Thermal stability was remarkably important, since the inhibitory activity was maintained at 55% after 1 h of incubation at 70 °C and at 53% after an incubation of 45 min at 80 °C. The potency of the current purified inhibitor against amylases from different origins indicates that αAI.Mol seems to possess the highest affinity toward human salivary α-amylase (90% inhibitory activity), followed by the α-amylase of insects Callosobruchus maculatus and Tribolium confusum (71% and 61%, respectively). The kinetic parameters were also calculated, and the Kmax and Vmax of the digestive amylase were estimated at 185 (mmol/min/mg) and 0.13 mM, respectively. The inhibitor possesses a strong bactericidal effect against Gram+ and Gram- strains, and the MIC values were >1 against B. cereus but >6 against E. coli. Interestingly, the rates of survival and pupation of C. maculates insect larvae were remarkably affected by the purified αAI.Mol from Moringa oleifera.


Assuntos
Besouros , Inseticidas , Moringa oleifera , Amilases , Animais , Escherichia coli , Humanos , Insetos , Inseticidas/química , Inseticidas/farmacologia , Larva , Extratos Vegetais/farmacologia , alfa-Amilases
14.
ACS Omega ; 7(22): 18443-18458, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694504

RESUMO

Colorectal carcinogenesis is a complex process, which is linked to dysregulation of human secretory phospholipases A2 (hsPLA2-G-IIA, hsPLA2-G-V, and hsPLA2-G-X), proteases (cathepsin-B, collagenase, thrombin, elastase, and trypsin), carbohydrate hydrolyzing enzymes (α-amylase and α-glucosidase), and free radical generating enzyme (xanthine oxidoreductase (XOR)). Therefore, some new quinazolinones were synthesized and evaluated as inhibitors against this array of enzymes as well as cytotoxic agents on LoVo and HCT-116 cells of colorectal cancer. Compounds 3g, 10, 8, 3c, and 1c exhibited promising cytotoxic effects with IC50 values ranging from 206.07 to 459.79 µM. Nine compounds showed promising enzymatic inhibitory effects, 3b, 3d, 3f, 5, 1a, and 12 (α-amylase), 8 (thrombin, elastase and trypsin), 10 (hsPLA2-G-IIA and hsPLA2-G-V), and 3f (α-glucosidase and XOR). Therefore, the most active inhibitors, were subjected to validated molecular docking studies to identify their affinities and binding modes. The expected physicochemical and pharmacokinetic features of the active candidates, 1a, 1c, 3b, 3c, 3d, 3f, 3g, 5, 8, 10, and 12 were predicted using bioavailability radar charts and boiled-egg graphical representations along with the Lipinski rule of five filter. Collectively, these studies showed the significance of derivatives 1c, 3b, 3c, 3d, 8, 10, and 12 as lead scaffolds for further optimization to develop enzymes inhibitors and anti-colorectal agents.

15.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684381

RESUMO

Secretory group V phospholipase A2 (PLA2-V) is known to be involved in inflammatory processes in cellular studies, nevertheless, the biochemical and the enzymatic characteristics of this important enzyme have been unclear yet. We reported, as a first step towards understanding the biochemical properties, catalytic characteristics, antimicrobial and cytotoxic effects of this PLA2, the production of PLA2-V from dromedary. The obtained DrPLA2-V has an absolute requirement for Ca2+ and NaTDC for enzymatic activity with an optimum pH of 9 and temperature of 45 °C with phosphatidylethanolamine as a substrate. Kinetic parameters showed that Kcat/Kmapp is 2.6 ± 0.02 mM-1 s-1. The enzyme was found to display potent Gram-positive bactericidal activity (with IC50 values of about 5 µg/mL) and antifungal activity (with IC50 values of about 25 µg/mL)in vitro. However, the purified enzyme did not display a cytotoxic effect against cancer cells.


Assuntos
Antibacterianos , Camelus , Animais , Antibacterianos/farmacologia , Cinética , Fosfolipases A2/farmacologia , Temperatura
16.
Metabolites ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36676975

RESUMO

The link between nutrition and autism spectrum disorder (ASD) as a neurodevelopmental condition, which is clinically presented as significant delays or deviations in interaction and communication, has provided a fresh point of view and signals that nutrition may play a role in the etiology of ASD, as well as playing an effective role in treatment by improving symptoms. In this study, 36 male albino rat pups were used. They were randomly divided into five groups. The control group was fed only a standard diet and water for the 30 days of the experiment. The second group, which served as a propionic acid (PPA)-induced rodent model of ASD, received orally administered PPA (250 mg/kg body weight (BW)) for 3 days, followed by feeding with a standard diet until the end of the experiment. The three other groups were given PPA (250 mg/kg body weight (BW)) for 3 days and then fed a standard diet and orally administered yogurt (3 mL/kg BW/day), artichokes (400 mL/kg BW/day), and a combination of Lacticaseibacillus rhamnosus GG at 0.2 mL daily (1 × 109 CFU; as the probiotic of yogurt) and luteolin (50 mg/kg BW/day; as the major antioxidant and anti-inflammatory ingredient of artichokes) for 27 days. Biochemical markers, including gamma-aminobutyric acid (GABA), reduced glutathione (GSH), glutathione peroxidase (GPx1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were measured in brain homogenates in all groups. The data showed that while PPA demonstrated oxidative stress and neuroinflammation in the treated rats, yogurt, Lacticaseibacillus rhamnosus GG as a probiotic, and luteolin as a prebiotic ingredient in artichokes were effective in alleviating the biochemical features of ASD. In conclusion, nutritional supplementation seems to be a promising intervention strategy for ASD. A combined dietary approach using pro- and prebiotics resulted in significant amelioration of most of the measured variables, suggesting that multiple interventions might be more relevant for the improvement of biochemical autistic features, as well as psychological traits. Prospective controlled trials are needed before recommendations can be made regarding the ideal ASD diet.

17.
ACS Omega ; 6(43): 28992-29008, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746589

RESUMO

Initiation of colorectal carcinogenesis may be induced by chromosomal instability caused by oxidative stress or indirectly by bacterial infections. Moreover, proliferating tumor cells are characterized by reprogrammed glucose metabolism, which is associated with upregulation of PDK1 and LDHA enzymes. In the present study, some 4,5,6,7-tetrahydrobenzo[b]thiophene derivatives in addition to Fe3O4 and Fe3O4/SiO2 nanoparticles (NPs) supported with a new Schiff base were synthesized for biological evaluation as PDK1 and LDHA inhibitors as well as antibacterial, antioxidant, and cytotoxic agents on LoVo and HCT-116 cells of colorectal cancer (CRC). The results showed that compound 1b is the most active as PDK1 and LDHA inhibitor with IC50 values (µg/mL) of 57.10 and 64.10 compared to 25.75 and 15.60, which were produced by the standard inhibitors sodium dichloroacetate and sodium oxamate, respectively. NPs12a,b and compound 1b exhibited the strongest antioxidant properties with IC50 values (µg/mL) of 80.0, 95.0, and 110.0 µg/mL, respectively, compared to 54.0 µg/mL, which was produced by butylated hydroxy toluene. Moreover, NPs12a and carbamate derivative 3b exhibited significant cytotoxic activities with IC50 values (µg/mL) of 57.15 and 81.50 (LoVo cells) and 60.35 and 71.00 (HCT-116 cells). Thus, NPs12a and compound 3b would be considered as promising candidates suitable for further optimization to develop new chemopreventive and chemotherapeutic agents against these types of CRC cell lines. Besides, molecular docking in the colchicine binding site of the tubulin (TUB) domain revealed a good binding affinity of 3b to the protein; in addition, the absorption, distribution, metabolism, and excretion (ADME) analyses showed its desirable drug-likeness and oral bioavailability characteristics.

18.
Food Sci Nutr ; 9(9): 4874-4882, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34531999

RESUMO

Brain inflammation and apoptosis play crucial roles in the pathogenesis of various neurodevelopmental disorders. Probiotics have been shown to confer protection against many stresses, including apoptosis and inflammation, by modulating the gut function. The short-chain fatty acid, propionic acid (PPA), plays an important intermediate of cellular metabolism. Although PPA exhibits numerous beneficial biological effects, its accumulation is neurotoxic. This study focused on the therapeutic potency of probiotics against PPA-induced apoptosis and neuroinflammation in hamsters. Five groups of male golden Syrian hamsters were treated as follows: Group I as control; Group II as PPA-treated with three doses of 250 mg PPA/kg/day; Group III as clindamycin-treated with a single dose of 30 mg clindamycin/kg; Group IV as PPA-probiotic; and Group V as clindamycin-probiotic were two therapeutic groups which were treated with the same doses of PPA and clindamycin, respectively, followed by treatment with 0.2 g kg-1 d-1 of probiotic (ProtexinR, Probiotics International Limited) for three weeks. Proapoptotic markers, such as caspases 3 and 7; neuroinflammation markers, such as interleukins 1ß and 8; and heat shock protein 70 were measured in the brain. Significant increase of all measured markers (p Ë‚ .001) was observed in PPA and clindamycin-treated hamsters compared with controls. Probiotics significantly reduced the damages and ameliorated all the test markers in both therapeutic groups compared with the control. Our results confirmed that probiotics can be utilized as a feasible strategy for managing apoptotic and inflammation-related stresses in brain disorders by retaining the gut function.

19.
Food Sci Nutr ; 9(8): 4440-4451, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401092

RESUMO

The present study investigated the combined effects of mixed probiotic and bee pollen on brain intoxication induced by propionic acid (PPA) in rat pups. Thirty western albino rats were divided into five groups, six animals each: (1) Control group receiving phosphate-buffered saline; (2) Probiotic and bee pollen-treated group being administered at the same dose with 200 mg/kg body weight; (c) PPA-treated group receiving a neurotoxic dose 250 mg/kg body weight of PPA for 3 days; (d) Therapeutic group being administered the neurotoxic dose of PPA followed by probiotic and bee pollen treatment 200 mg/kg body weight; (e) Protective group receiving probiotic and bee pollen mixture treatment followed by neurotoxic dose of PPA. Selected biochemical parameters linked to oxidative stress, energy metabolism, and neurotransmission were investigated in brain homogenates from all the five groups. PPA treatment showed an increase in oxidative stress markers like lipid peroxidation coupled with a significant decrease in glutathione level. Impaired energy metabolism was ascertained via the alteration of creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Dramatic increase of Na+ and K+ concentrations together with a decrease of GABA and IL-6 and an elevation of glutamate levels in PPA-treated rat's pups confirmed the neurotoxicity effect of PPA. Interestingly, the mixed probiotic and bee pollen treatment were effective in restoring the levels of glutamate, GABA, and IL-6 in addition to normalizing the levels of lipid peroxidation and glutathione and the activities of CK and LDH. The present study indicates that mixed probiotic and bee pollen treatment can improve poor detoxification, oxidative stress, and neuroinflammation as mechanisms implicated in the etiology of autism.

20.
Molecules ; 26(11)2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071141

RESUMO

The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff's bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Quinazolinonas/farmacologia , Quinoxalinas/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...