Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 569: 118572, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31352052

RESUMO

The association between superparamagnetic iron oxide nanoparticles (SPION), carrying small interfering RNA (siRNA) as therapeutic agents and humanized anti- human epidermal growth factor receptor-2 (HER2) single-chain antibody fragments (scFv) for the active delivery into HER2-overexpressing cells appears as an interesting approach for patients with HER2-overexpressing advanced breast cancer. The obtained Targeted Stealth Magnetic siRNA Nanovectors (TS-MSN) are formulated by combining: (i) the synthesis protocol of Targeted Stealth Fluorescent Particles (T-SFP) which form the core of TS-MSN and (ii) the formulation protocol allowing the loading of T-SFP with polyplexes (siRNA and cationic polymers). TS-MSN have suitable physico-chemical characteristics for intravenous administration and protect siRNA against enzymatic degradation up to 24 h. The presence of HER2-targeting scFv on TS-MSN allowed an improved internalization (3-4 times more compared to untargeted S-MSN) in HER2-overexpressing breast cancer cells (BT-474). Furthermore, anti-survivin siRNA delivered by TS-MSN in HER2-negative breast-cancer control cells (MDA-MB-231) allowed significant down-regulation of the targeted anti-apoptotic protein of about 70%. This protein down-regulation increased in HER2+ cells to about 90% (compared to 70% with S-MSN in both cell lines) indicating the contribution of the HER2-active targeting. In conclusion, TS-MSN are promising nanocarriers for the specific and efficient delivery of siRNA to HER2-overexpressing breast cancer cells.


Assuntos
Fenômenos Magnéticos , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas de Fluorescência Verde/genética , Humanos , Receptor ErbB-2/metabolismo
2.
Int J Pharm ; 567: 118432, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199995

RESUMO

The application of small interfering RNA (siRNA) cancer therapeutics is limited by several extra- and intracellular barriers including the presence of ribonucleases that degrade siRNA, the premature clearance, the impermeability of the cell membrane, or the difficulty to escape endo-lysosomal degradation. Therefore, several delivery systems have emerged to overcome these limitations and to successfully deliver siRNA to the tumor site. This review is focused on polymer-based siRNA nanovectors which exploit the negative charge of siRNA, representing a major challenge for siRNA delivery, to their advantage by loading siRNA via electrostatic assembly. These nanovectors are easy to prepare and to adapt for an optimal gene silencing efficiency. The ability of electrostatically assembled polymeric siRNA nanovectors (EPSN) to improve the half-life of siRNA, to favor the specificity of the delivery and the accumulation in tumor and to enhance the cellular uptake and endosomal escape for an efficient siRNA delivery will be discussed. Finally, the influence of the versatility of the structure of these nanovectors on the protein down-regulation will be evaluated.


Assuntos
Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Polímeros/administração & dosagem , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...