Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14795, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684341

RESUMO

Access to dependable and environmentally friendly energy sources is critical to a country's economic growth and long-term development. As countries seek greener energy alternatives, the interaction of environmental elements, temperature, and sunlight becomes more critical in utilizing renewable energy sources such as wind and bioenergy. Solar power has received much attention due to extraordinary efficiency advances. under this context, the present work focus on solar radiation and chemical processes in the presence of modified ternary hybrid nanofluids (THNFs) circulating over an exponentially stretched surface in both aiding flow (A-F) and opposing flow (O-F) circumstances. The primary objective of this investigation is to dive into the complicated dynamics of these structures, which are distinguished by complex interactions involving radiation, chemical reactions, and the movement of fluids. We construct reduced ordinary differential equations from the governing equations using suitable similarity transformations, which allows for a more in-depth examination of the liquid's behavior. Numerical simulations using the Runge-Kutta Fehlberg (RKF) approach and shooting techniques are used to understand the underlying difficulties of these reduced equations. The results show that thermal radiation improves heat transmission substantially under O-F circumstances in contrast to A-F conditions. Furthermore, the reaction rate parameter has an exciting connection with concentration levels, with greater rates corresponding to lower concentrations. Furthermore, compared to the O-F scenario, the A-F scenario promotes higher heat transfer in the context of a modified nanofluid. Rising reaction rate and solid fraction volume enhanced mass transfer rate. The rate of thermal distribution in THNFs improves from 0.13 to 20.4% in A-F and 0.16 to 15.06% in O-F case when compared to HNFs. This study has real-world implications in several fields, including developing more efficient solar water heaters, solar thermal generating plants, and energy-saving air conditioners.

2.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897549

RESUMO

Prior studies in the literature show promising results regarding the improvements in strength and durability of concrete upon incorporation of glass fibers into concrete formulations. However, the knowledge regarding glass fiber usage in concrete is scattered. Moreover, this makes it challenging to understand the behavior of glass fiber-reinforced concrete. Therefore, a detailed review is required on glass fiber-reinforced concrete. This paper provides a compressive analysis of glass fiber-reinforced composites. All-important properties of concrete such as flowability, compressive, flexural, tensile strength and modulus of elasticity were presented in this review article. Furthermore, durability aspects such as chloride ion penetration, water absorption, ultrasonic pulse velocity (UPV) and acid resistance were also considered. Finally, the bond strength of the fiber and cement paste was examined via scanning electron microscopy. Results indicate that glass fibers improved concrete's strength and durability but decreased the concrete's flowability. Higher glass fiber doses slightly decreased the mechanical performance of concrete due to lack of workability. The typical optimum dose is recommended at 2.0%. However, a higher dose of plasticizer was recommended for a higher dose of glass fiber (beyond 2.0%). The review also identifies research gaps that should be addressed in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...