Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(9): 3780-3790, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459581

RESUMO

Stable biobased waterborne Pickering dispersions of acrylated epoxidized soybean oil (AESO) were developed using chitin nanocrystals (ChNCs) as sole emulsifier without any additives. Thin AESO-ChNC nanocomposite films were produced by UV-curing thin-coated layers of the AESO emulsion after water evaporation. The kinetics of photopolymerization were assessed by monitoring the consumption of the AESO acrylate groups by infrared spectroscopy (Fourier transform infrared (FTIR)). The curing was faster in the presence of ChNCs, with a disappearance of the induction period observed for neat AESO. The coating of AESO droplets with a thin layer of ChNCs was confirmed by scanning electron microscopy (SEM) observation. SEM and transmission electron microscopy (TEM) images revealed the honeycomb organization of ChNCs inside the cured AESO-ChNC films. The mechanical, thermal, and optical properties of the nanocomposite films were studied by dynamic mechanical analysis (DMA), tensile testing, differential scanning calorimetry (DSC), and transmittance measurement, as a function of ChNC content. The inclusion of ChNCs is strongly beneficial to increase the stiffness and strength of the cured films, without compromising its optical transparency. The ability of ChNCs to act as an emulsifier for AESO in replacement of synthetic surfactants and their strong reinforcing effect in UV-cured films offer new opportunities to produce waterborne stable dispersions from AESO for application in biobased coatings and adhesives.


Assuntos
Nanocompostos , Nanopartículas , Quitina , Óleo de Soja
2.
J Colloid Interface Sci ; 363(1): 129-36, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21851951

RESUMO

Stable film-forming nanocomposite particles with diameters ranging from 120 to 300 nm, based on polybutylmethacrylate (PBMA) and cellulose whiskers in water dispersions, were successfully synthesized in one step through mini-emulsion polymerization. The nanocomposite dispersion with a solid content of 25 wt.% and up to 5 wt.% of nanofiller loading was prepared by in situ polymerization, in the presence of the whiskers using dodecylpyridinium chloride (DPC), as a cationic surfactant, and 2,2-azobis(isobutyronitrile) (AIBN), as initiator. The electrostatic interaction between the positively charged droplets and negatively charged whiskers ensured the anchoring of the nanofiller around the polymer particles. The ensuing dispersions were characterized by Dynamic Light Scattering (DLS), ζ-Potential Measurements, and Field-Emission Scanning Electron Microscopy (FE-SEM). After the film formation process, the nanocomposite film exhibits a high transparency, denoting the good dispersion of the whiskers throughout the matrix.


Assuntos
Celulose/química , Nanocompostos/química , Polímeros/química , Polímeros/síntese química , Técnicas de Química Sintética , Emulsões/síntese química , Emulsões/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...