Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 326: 114913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452821

RESUMO

Hepatitis B virus (HBV) infection is a global public health burden and affects approximatively 300 million people around the world. Since, HBV population is represented with genetic diversity, having different viral effects. Development of a new prognosis method play a key role on the efficiency of the different treatment. The HBx protein of HBV has a potential role in Hepatocellular Carcinoma (HCC), which makes it a valuable target for HCC prognosis. In this context, the first quantitative real-time PCR (qRT-PCR) assay in the Mediterranean area was developed and validated. Specific primers and probes of a conserved X region across all HBV genotypes were designed and the qRT-PCR was performed with the TaqPath 1-Step Multiplex Master Mix on 441 Moroccan plasma samples in Pasteur Institute of Morocco. The assay demonstrated a linear quantification range of 1010-101 IU/reaction (R2 = 0.99) and a quantification limit of 15 IU/mL. Comparative evaluations with the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) HBV, v2.0 and the artus HBV QS-RGQ assays showed strong correlations (R2 = 0.92 and R2 = 0.89, respectively). Our test is fast, highly sensitive, specific, reproducible, and labor-saving. This system will be of great advantage to Mediterranean countries in their efforts to eliminate viral hepatitis B and C by 2030, enabling precise monitoring and effective treatment of HBV infections.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Reação em Cadeia da Polimerase em Tempo Real , DNA Viral/genética , Hepatite B/diagnóstico , Carga Viral/métodos , Sensibilidade e Especificidade
2.
Front Immunol ; 14: 1188497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564652

RESUMO

Innate immunity constitutes the first nonspecific immunological line of defense against infection. In this response, a variety of mechanisms are activated: the complement system, phagocytosis, and the inflammatory response. Then, adaptive immunity is activated. Major opsonization mediators during infections are immunoglobulins (Igs), the function of which is mediated through Fc receptors (FcRs). However, in addition to their role in adaptive immunity, FcRs have been shown to play a role in innate immunity by interacting directly with bacteria in the absence of their natural ligands (Igs). Additionally, it has been hypothesized that during the early phase of bacterial infection, FcRs play a protective role via innate immune functions mediated through direct recognition of bacteria, and as the infection progresses to later phases, FcRs exhibit their established function as receptors in adaptive immunity. This review provides detailed insight into the potential role of FcRs as innate immune mediators of the host defense against bacterial infection independent of opsonins.


Assuntos
Imunidade Inata , Receptores Fc , Fagocitose , Imunoglobulinas , Proteínas do Sistema Complemento
3.
Cannabis Cannabinoid Res ; 8(2): 254-269, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36413346

RESUMO

Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.


Assuntos
COVID-19 , Canabidiol , Canabinoides , Cannabis , Alucinógenos , Doenças Inflamatórias Intestinais , Estados Unidos , Criança , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Endocanabinoides/metabolismo , Agonistas de Receptores de Canabinoides , Fatores Imunológicos , Doenças Inflamatórias Intestinais/tratamento farmacológico
4.
Front Immunol ; 13: 1029759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389775

RESUMO

The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on ß and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.


Assuntos
Anafilaxia , Insulina , Animais , Camundongos , Insulina/farmacologia , Aminopeptidases/metabolismo , Cistinil Aminopeptidase , Receptores Fc , Receptores de IgG/genética , Receptores de IgE , Complexo Antígeno-Anticorpo , Inflamação
5.
Front Immunol ; 13: 1028013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420268

RESUMO

CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Receptores Imunológicos/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células Matadoras Naturais/metabolismo , Glicosilfosfatidilinositóis , Neoplasia Residual
6.
J Pers Med ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923466

RESUMO

IgA Nephropathy (IgAN) is the most common glomerulonephritis worldwide, characterized by the mesangial deposition of abnormally glycosylated IgA1 (Gd-IgA). The production of Gd-IgA occurs in mucose-associated lymphoid tissue (MALT). The microbiota plays a role in MALT modulation. Rifaximin (NORMIX®), a non-absorbable oral antibiotic, induces positive modulation of the gut microbiota, favoring the growth of bacteria beneficial to the host. Here, we evaluate the effect of rifaximin on a humanized mice model of IgAN (α1KI-CD89Tg). Methods: The α1KI-CD89Tg mice were treated by the vehicle (olive oil) or rifaximin (NORMIX®). Serum levels of hIgA, hIgA1-sCD89, and mIgG-hIgA1 immune complexes were determined. Glomerular hIgA1 deposit and CD11b+ cells recruitment were revealed using confocal microscopy. Furthermore, the mRNA of the B-Cell Activating Factor (BAFF), polymeric immunoglobulin receptor (pIgR), and Tumor Necrosing Factor-α (TNF-α) in gut samples were detected by qPCR. Results: Rifaximin treatment decreased the urinary protein-to-creatinine ratio, serum levels of hIgA1-sCD89 and mIgG-hIgA1 complexes, hIgA1 glomerular deposition, and CD11b+ cell infiltration. Moreover, rifaximin treatment decreased significantly BAFF, pIgR, and TNF-α mRNA expression. Conclusions: Rifaximin decreased the IgAN symptoms observed in α1KI-CD89Tg mice, suggesting a possible role for it in the treatment of the disease.

8.
Nephrol Dial Transplant ; 36(3): 452-464, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33200215

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis. The role of the microbiota and mucosal immunity in the pathogenesis of IgAN remains a key element. To date, the hypothetical relationship between commensal bacteria, elevated tumour necrosis factor (TNF) superfamily member 13 [also known as B-cell activating factor (BAFF)] levels, perturbed homoeostasis of intestinal-activated B cells and intestinal IgA class switch has not been clearly shown in IgAN patients. METHODS: We studied the intestinal-renal axis connections, analysing levels of BAFF, TNF ligand superfamily member 13 (APRIL) and intestinal-activated B cells in IgAN patients, healthy subjects (HSs) and patients with non-IgA glomerulonephritides. RESULTS: IgAN patients had increased serum levels of BAFF cytokine, correlating with higher amounts of five specific microbiota metabolites, and high APRIL cytokine serum levels. We also found that subjects with IgAN have a higher level of circulating gut-homing (CCR9+ ß7 integrin+) regultory B cells, memory B cells and IgA+ memory B cells compared with HSs. Finally, we found that IgAN patients had high levels of both total plasmablasts (PBs) and intestinal-homing PBs. Interestingly, PBs significantly increased in IgAN but not in patients with other glomerulonephritides. CONCLUSIONS: Our results demonstrate a significant difference in the amount of intestinal-activated B lymphocytes between IgAN patients and HSs, confirming the hypothesis of the pathogenic role of intestinal mucosal hyperresponsiveness in IgAN. The intestinal-renal axis plays a crucial role in IgAN and several factors may contribute to its complex pathogenesis and provide an important area of research for novel targeted therapies to modulate progression of the disease.


Assuntos
Linfócitos B/imunologia , Microbioma Gastrointestinal/imunologia , Glomerulonefrite por IGA/complicações , Imunidade nas Mucosas/imunologia , Imunoglobulina A/sangue , Inflamação/patologia , Mucosa Intestinal/imunologia , Adulto , Linfócitos B/metabolismo , Linfócitos B/patologia , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
9.
Front Immunol ; 11: 1841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793246

RESUMO

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a betacoronavirus, and is associated with cytokine storm inflammation and lung injury, leading to respiratory distress. The transmission of the virus is mediated by human contact. To control and prevent the spread of this virus, the majority of people worldwide are facing quarantine; patients are being subjected to non-specific treatments under isolation. To prevent and stop the COVID-19 pandemic, several clinical trials are in the pipeline. The current clinical trials either target the intracellular replication and spread of the virus or the cytokine storm inflammation seen in COVID-19 cases during the later stages of the disease. Since both targeting strategies are different, the window drug administration plays a crucial role in the efficacy of the treatment. Here, we review the mechanism underlying SARS-CoV-2 cell infection and potential future therapeutic approaches.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Síndrome da Liberação de Citocina/tratamento farmacológico , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Insuficiência Respiratória/terapia , Anti-Inflamatórios/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Anticoagulantes/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/transmissão , Humanos , Pneumonia Viral/transmissão , Quarentena/métodos , SARS-CoV-2
10.
Autophagy ; 16(8): 1526-1528, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434445

RESUMO

Control of systemic and hepatic inflammation, in particular originating from monocytes/macrophages, is crucial to prevent liver fibrosis and its progression to end-stage cirrhosis. LC3-associated phagocytosis (LAP) is a non-canonical form of autophagy that shifts the monocyte/macrophage phenotype to an anti-inflammatory phenotype. In a recent study, we uncovered LAP as a protective mechanism against inflammation-driven liver fibrosis and systemic inflammation in the context of cirrhosis. We observed that LAP is enhanced in blood and liver monocytes from patients with liver fibrosis or those who progress to cirrhosis. Combining studies in which LAP was pharmacologically or genetically inactivated, we found that LAP limits inflammation in monocytes from cirrhotic patients, and the hepatic inflammatory profile in mice with chronic liver injury, resulting in anti-fibrogenic effects. Mechanistically, LAP-induced anti-inflammatory and antifibrogenic signaling results from enhanced expression of the Fc immunoreceptor FCGR2A/FcγRIIA and activation of an FCGR2A-mediated PTPN6/SHP-1 anti-inflammatory pathway, leading to increased engulfment of IgG into LC3 + phagosomes. In patients with cirrhosis progressing to multi-organ failure (acute-on chronic liver failure), LAP is lost in monocytes, and can be restored by targeting FCGR2A-mediated PTPN6/SHP-1 signaling. These data suggest that sustaining LAP may open novel therapeutic perspectives for patients with end-stage liver disease.


Assuntos
Inflamação/patologia , Cirrose Hepática/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Fagocitose , Transdução de Sinais , Humanos , Inflamação/sangue , Cirrose Hepática/sangue
11.
Sci Transl Med ; 12(539)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295902

RESUMO

Sustained hepatic and systemic inflammation, particularly originating from monocytes/macrophages, is a driving force for fibrosis progression to end-stage cirrhosis and underlies the development of multiorgan failure. Reprogramming monocyte/macrophage phenotype has emerged as a strategy to limit inflammation during chronic liver injury. Here, we report that LC3-associated phagocytosis (LAP), a noncanonical form of autophagy, protects against hepatic and systemic inflammation during chronic liver injury in rodents, with beneficial antifibrogenic effects. LAP is enhanced in blood and liver monocytes from patients with fibrosis and cirrhosis. Pharmacological inhibition of LAP components in human monocytes from patients with cirrhosis or genetic disruption of LAP in mice with chronic liver injury exacerbates both the inflammatory signature in isolated human monocytes and the hepatic inflammatory profile in mice, resulting in enhanced liver fibrosis. Mechanistically, patients with cirrhosis showed increased monocyte expression of Fc fragment of IgG receptor IIA (FcγRIIA) and enhanced engulfment of immunoglobulin G in LC3+ phagosomes that triggers an FcγRIIA/Src homology region 2 domain-containing phosphatase-1 (SHP-1) inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) anti-inflammatory pathway. Mice overexpressing human FcγRIIA in myeloid cells show enhanced LAP in response to chronic liver injury and resistance to inflammation and liver fibrosis. Activation of LAP is lost in monocytes from patients with multiorgan failure and restored by specifically targeting ITAMi signaling with anti-FcγRIIA F(ab')2 fragments, or with intravenous immunoglobulin (IVIg). These data suggest the existence of an ITAMi-mediated mechanism by which LAP might protect against inflammation. Sustaining LAP may open therapeutic perspectives for patients with chronic liver disease.


Assuntos
Cirrose Hepática , Fagocitose , Transdução de Sinais , Animais , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos
12.
Front Immunol ; 10: 811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057544

RESUMO

Fc receptors (FcRs) belong to the ITAM-associated receptor family. FcRs control the humoral and innate immunity which are essential for appropriate responses to infections and prevention of chronic inflammation or auto-immune diseases. Following their crosslinking by immune complexes, FcRs play various roles such as modulation of the immune response by released cytokines or of phagocytosis. Here, we review FcR involvement in pathologies leading notably to altered intracellular signaling with functionally relevant consequences to the host, and targeting of Fc receptors as therapeutic approaches. Special emphasis will be given to some FcRs, such as the FcαRI, the FcγRIIA and the FcγRIIIA, which behave like the ancient god Janus depending on the ITAM motif to inhibit or activate immune responses depending on their targeting by monomeric/dimeric immunoglobulins or by immune complexes. This ITAM duality has been recently defined as inhibitory or activating ITAM (ITAMi or ITAMa) which are controlled by Src family kinases. Involvement of various ITAM-bearing FcRs observed during infectious or autoimmune diseases is associated with allelic variants, changes in ligand binding ability responsible for host defense perturbation. During auto-immune diseases such as rheumatoid arthritis, lupus or immune thrombocytopenia, the autoantibodies and immune complexes lead to inflammation through FcR aggregation. We will discuss the role of FcRs in autoimmune diseases, and focus on novel approaches to target FcRs for resolution of antibody-mediated autoimmunity. We will finally also discuss the down-regulation of FcR functionality as a therapeutic approach for autoimmune diseases.


Assuntos
Inflamação/imunologia , Receptores Fc/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes/imunologia , Humanos , Imunidade Inata/imunologia , Transdução de Sinais/imunologia
13.
Cell Rep ; 27(3): 762-775.e5, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995475

RESUMO

Direct bacterial recognition by innate receptors is crucial for bacterial clearance. Here, we show that the IgA receptor CD89 is a major innate receptor that directly binds bacteria independently of its cognate ligands IgA and c-reactive protein (CRP). This binding is only partially inhibited by serum IgA and induces bacterial phagocytosis by CD11c+ dendritic cells and monocytes and/or macrophages, suggesting a physiological role in innate host defense. Blood phagocytes from common variable immunodeficiency patients bind, internalize, and kill bacteria in a CD89-dependent manner, confirming the IgA independence of this mechanism. In vivo, CD89 transgenic mice are protected in two different models of sepsis: a model of pneumonia and the cecal ligation and puncture (CLP) polymicrobial model of infection. These data identify CD89 as a first-line innate receptor for bacterial clearance before adaptive responses can be mounted. Fc receptors may emerge as a class of innate receptors for various bacteria with pleiotropic roles.


Assuntos
Antígenos CD/metabolismo , Escherichia coli/fisiologia , Receptores Fc/metabolismo , Sepse/prevenção & controle , Streptococcus pneumoniae/fisiologia , Animais , Antígenos CD/genética , Proteína C-Reativa/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose , Pneumonia/mortalidade , Pneumonia/patologia , Receptores Fc/genética , Sepse/imunologia
14.
Nephrol Dial Transplant ; 34(7): 1135-1144, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462346

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. IgA is mainly produced by the gut-associated lymphoid tissue (GALT). Both experimental and clinical data suggest a role of the gut microbiota in this disease. We aimed to determine if an intervention targeting the gut microbiota could impact the development of disease in a humanized mouse model of IgAN, the α1KI-CD89Tg mice. METHODS: Four- and 12-week old mice were divided into two groups to receive either antibiotics or vehicle control. Faecal bacterial load and proteinuria were quantified both at the beginning and at the end of the experiment, when blood, kidneys and intestinal tissue were collected. Serum mouse immunoglobulin G (mIgG) and human immunoglobulin A1 (hIgA1)-containing complexes were quantified. Renal and intestinal tissue were analysed by optical microscopy after haematoxylin and eosin colouration and immunohistochemistry with anti-hIgA and anti-mouse CD11b antibodies. RESULTS: Antibiotic treatment efficiently depleted the faecal microbiota, impaired GALT architecture and impacted mouse IgA production. However, while hIgA1 and mIgG serum levels were unchanged, the antibiotic treatment markedly prevented hIgA1 mesangial deposition, glomerular inflammation and the development of proteinuria. This was associated with a significant decrease in circulating hIgA1-mIgG complexes. Notably, final faecal bacterial load strongly correlated with critical clinical and pathophysiological features of IgAN such as proteinuria and hIgA1-mIgG complexes. In addition, treatment with broad-spectrum antibiotics reverted established disease. CONCLUSIONS: These data support an essential role of the gut microbiota in the generation of mucosa-derived nephrotoxic IgA1 and in IgAN development, opening new avenues for therapeutic approaches in this disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Glomerulonefrite por IGA , Animais , Feminino , Masculino , Camundongos , Administração Oral , Antibacterianos/administração & dosagem , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/microbiologia
16.
Autoimmun Rev ; 16(12): 1246-1253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29037908

RESUMO

Immunoglobulin A vasculitis (IgAV), also referred to as Henoch-Schönlein purpura, is the most common form of childhood vasculitis. The pathogenesis of IgAV is still largely unknown. The disease is characterized by IgA1-immune deposits, complement factors and neutrophil infiltration, which is accompanied with vascular inflammation. Incidence of IgAV is twice as high during fall and winter, suggesting an environmental trigger associated to climate. Symptoms can resolve without intervention, but some patients develop glomerulonephritis with features similar to IgA nephropathy that include hematuria, proteinuria and IgA deposition in the glomerulus. Ultimately, this can lead to end-stage renal disease. In IgA nephropathy immune complexes containing galactose-deficient (Gd-)IgA1 are found and thought to play a role in pathogenesis. Although Gd-IgA1 complexes are also present in patients with IgAV with nephritis, their role in IgAV is disputed. Alternatively, it has been proposed that in IgAV IgA1 antibodies are generated against endothelial cells. We anticipate that such IgA complexes can activate neutrophils via the IgA Fc receptor FcαRI (CD89), thereby inducing neutrophil migration and activation, which ultimately causes tissue damage in IgAV. In this Review, we discuss the putative role of IgA, IgA receptors, neutrophils and other factors such as infections, genetics and the complement system in the pathogenesis of IgA vasculitis.


Assuntos
Vasculite por IgA/imunologia , Animais , Anticorpos/imunologia , Células Endoteliais/imunologia , Glomerulonefrite por IGA/imunologia , Humanos , Imunoglobulina A/imunologia , Receptores Fc/imunologia
17.
J Am Soc Nephrol ; 28(12): 3605-3615, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28784700

RESUMO

Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients (n=169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF-κB and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants.


Assuntos
Ferro/sangue , Rim/patologia , Traumatismo por Reperfusão/prevenção & controle , Adulto , Aloenxertos , Animais , Antioxidantes/metabolismo , Feminino , Ferritinas/sangue , Taxa de Filtração Glomerular , Humanos , Inflamação , Ferro/química , Rim/metabolismo , Transplante de Rim , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Peritonite/metabolismo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
18.
J Immunol ; 198(6): 2374-2382, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167630

RESUMO

Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells. Depletion of mast cells prior to IRI resulted in improved renal function due to diminished local inflammatory cytokine/chemokine levels and neutrophil recruitment to the kidneys after the acute injury phase (48 h post-IRI). Furthermore, although not completely protected, mast cell-depleted mice displayed less organ atrophy and fibrosis than did wild-type mice during the chronic phases (2 and 6 wk post-IRI) of disease development. Conversely, mast cell ablation after the acute phase of IRI had no impact on organ atrophy, tubular necrosis, or fibrosis. Thus, our results suggest a deleterious role of mast cells during the acute inflammatory phase of IRI promoting subsequent fibrosis development, but not during the chronic phase of the disease.


Assuntos
Injúria Renal Aguda/imunologia , Rim/imunologia , Mastócitos/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Degranulação Celular , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Infiltração de Neutrófilos , Receptores de IgE/genética
19.
Nephrol Dial Transplant ; 31(8): 1235-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26410885

RESUMO

Strait et al. described a novel mouse model of cryoglobulinaemia by challenging mice deficient in the immunoglobulin (Ig)G1 subclass (γ1(-) mice) with goat anti-mouse IgD [5]. The phenotype of wild-type mice was not remarkable, whereas γ1(-) mice developed IgG3 anti-goat IgG cryoglobulins as well as severe and lethal glomerulonephritis. Renal phenotype could not be rescued in γ1(-) mice by the deletion of C3, fragment crystalline γ receptor (FcγR) or J chain. On the other hand, early injection of IgG1, IgG2a or IgG2b inhibited the pathogenic effects of IgG3 in an antigen-dependent manner even in the absence of the FcγRIIb, an anti-inflammatory receptor. The authors concluded that the pathogenic role of IgG3 and the protective characteristic of IgG1 in this model were not explained by their abilities to bind to FcRs or effector molecules but are rather due to structural discrepancies enhancing the precipitation properties/solubility of IgG3/IgG1-containing immune complexes. The present article aims to discuss the current knowledge on IgG biology and the properties of IgGs explaining their differential propensity to acquire cryoglobulin activity.


Assuntos
Crioglobulinemia/patologia , Crioglobulinemia/prevenção & controle , Modelos Animais de Doenças , Imunoglobulina G/uso terapêutico , Animais , Crioglobulinemia/imunologia , Humanos , Camundongos
20.
Arthritis Rheumatol ; 67(7): 1766-77, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25833812

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA), one of the most frequent chronic inflammatory rheumatic disorders, is characterized by the presence of autoantibodies and joint infiltration by activated immune cells, leading to cartilage and bone destruction. IgA occurs predominantly as monomers (mIgA) in plasma and regulates many cell responses through interaction with the Fcα receptor type I (FcαRI). FcαRI targeting by anti-FcαRI Fab inhibits activating receptors by inducing an inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) configuration through SH2 domain-containing phosphatase 1 (SHP-1) recruitment. The aim of this study was to investigate the potential utility of mIgA for the treatment of arthritis by acting as an inducer of ITAMi signaling. METHODS: The effect of plasma-derived human mIgA on inhibition of multiple heterologous receptors was evaluated on FcαRI+ cell transfectants, blood phagocytes from healthy individuals, and synovial cells from RA patients. FcαRI-transgenic mice and wild-type mice treated with mIgA were studied in models of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The mice were assessed for development of arthritis using an arthritis score, and joint tissue samples were evaluated for the extent of leukocyte infiltration and expression of phosphatase. RESULTS: Treatment with mIgA impaired cell activation in an FcαRI-FcRγ-dependent manner, involving ITAMi signaling. Human mIgA or anti-FcαRI Fab were strongly effective in either preventing or attenuating CAIA or CIA in FcαRI-transgenic mice. Administration of mIgA markedly inhibited the recruitment of leukocytes to the inflamed joints of mice, which was associated with induction of SHP-1 phosphorylation in joint tissue cells. Moreover, mIgA reversed the state of inflammation in the synovial fluid of RA patients by inducing an ITAMi configuration. CONCLUSION: These results demonstrate a therapeutic potential of human mIgA in experimental arthritis. The findings support future clinical exploration of mIgA for the treatment of RA.


Assuntos
Antígenos CD/fisiologia , Artrite Experimental/fisiopatologia , Imunoglobulina A/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Receptores Fc/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina A/uso terapêutico , Técnicas In Vitro , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagócitos/efeitos dos fármacos , Fagócitos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/efeitos dos fármacos , Receptores Fc/efeitos dos fármacos , Receptores Fc/genética , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...