Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(28): eado2483, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996017

RESUMO

Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Humanos , Animais , Magnetismo
2.
J Am Chem Soc ; 142(32): 13743-13755, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32689791

RESUMO

In many marine organisms, biomineralization-the crystallization of calcium-based ionic lattices-demonstrates how regulated processes optimize for diverse functions, often via incorporation of agents from the precipitation medium. We study a model system consisting of l-aspartic acid (Asp) which when added to the precipitation solution of calcium carbonate crystallizes the thermodynamically disfavored polymorph vaterite. Though vaterite is at best only kinetically stable, that stability is tunable, as vaterite grown with Asp at high concentration is both thermally and temporally stable, while vaterite grown at 10-fold lower Asp concentration, yet 2-fold less in the crystal, spontaneously transforms to calcite. Solid-state NMR shows that Asp is sparsely occluded within vaterite and calcite. CP-REDOR NMR reveals that each Asp is embedded in a perturbed occlusion shell of ∼8 disordered carbonates which bridge to the bulk. In both the as-deposited vaterites and the evolved calcite, the perturbed shell contains two sets of carbonate species distinguished by their proximity to the amine and identifiable based on 13C chemical shifts. The embedding shell and the occluded Asp act as an integral until which minimally rearranges even as the bulk undergoes extensive reorganization. The resilience of these occlusion units suggests that large Asp-free domains drive the vaterite to calcite transformation-which are retarded by the occlusion units, resulting in concentration-dependent lattice stability. Understanding the structure and properties of the occlusion unit, uniquely amenable to ssNMR, thus appears to be a key to explaining other macroscopic properties, such as hardness.

3.
Acta Biomater ; 80: 176-187, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217589

RESUMO

Bivalve shells are inorganic-organic nanocomposites whose material properties outperform their purely inorganic mineral counterparts. Most typically the inorganic phase is a polymorph of CaCO3, while the organic phase contains biopolymers which have been presumed to be chitin and/or proteins. Identifying the biopolymer phase is therefore a crucial step in improving our understanding of design principles relevant to biominerals. In this work we study seven shells; four are examples of nacroprismatic shells (Alathyria jacksoni, Pinctada maxima, Hyriopsis cumingii and Cucumerunio novaehollandiae), one homogeneous (Arctica islandica), and two are crossed lamellar (Callista kingii, Tridacna gigas). Both intact shells, their organic extracts as isolated after decalcification in acid, and the periostracum overlay have been studied by solid-state CP-MAS NMR, FTIR, SEM and chemical analysis. In none of the shells examined in this work do we find a significant contribution to the organic fraction from chitin or its derivatives despite popular models of bivalve biomineralization which assume abundant chitin in the organic fraction of mollusk bivalve shells. In each of the nacroprismatic extracts the 13C NMR spectra represent similar proteinaceous material, Ala and Gly-rich and primarily organized as ß-sheets. A different, yet highly conserved protein was found in the periostracum covering each of the three nacreous shells studied. The Arctica islandica shells with homogeneous microstructure contained proteins which do not appear to be silk-like, while in the crossed lamellar shells we extracted too little organic matter to characterize. STATEMENT OF SIGNIFICANCE: Hydrophobic macromolecules are structural components within the calcareous inorganic matrix of bivalve shells and are responsible for enhanced materials properties of the biominerals. Prevalent models suggest that chitin is such major hydrophobic component. Contrary to that we show that chitin is rare within the hydrophobic biopolymers which primarily consist of proteinaceous matter with structural motifs as silk-like ß-sheets, or others yet to be determined. Recognizing that diverse proteinaceous motifs, devoid of abundant chitin, can yield the optimized mechanical properties of bivalve shells is critical both to understand the mechanistic pathways by which they regulate biomineralization and for the design of novel bioinspired materials.


Assuntos
Exoesqueleto/química , Bivalves/química , Quitina/química , Substâncias Macromoleculares/química , Ácidos/química , Exoesqueleto/ultraestrutura , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Quitina/ultraestrutura , Compostos Inorgânicos/análise , Conformação Molecular , Monossacarídeos/análise , Compostos Orgânicos/análise , Proteínas/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
4.
J Phys Chem B ; 114(18): 5989-96, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20397675

RESUMO

The molecular interface between bioorganics and inorganics plays a key role in diverse scientific and technological research areas including nanoelectronics, biomimetics, biomineralization, and medical applications such as drug delivery systems and implant coatings. However, the physical/chemical basis of recognition of inorganic surfaces by biomolecules remains unclear. The molecular level elucidation of specific interfacial interactions and the structural and dynamical state of the surface bound molecules is of prime scientific importance. In this study, we demonstrate the ability of solid state NMR methods to accomplish these goals. L-[1-(13)C,(15)N]Alanine loaded onto SBA-15 mesoporous silica with a high surface area served as a model system. The interacting alanine moiety was identified as the -NH(3)(+) functional group by (15)N{(1)H}SLF NMR. (29)Si{(15)N} and (15)N{(29)Si}REDOR NMR revealed intermolecular interactions between the alanine -NH(3)(+) and three to four surface Si species, predominantly Q(3), with similar internuclear N...Si distances of 4.0-4.2 A. Distinct dynamic states of the adsorbed biomolecules were identified by (15)N{(13)C}REDOR NMR, indicating both bound and free alanine populations, depending on hydration level and temperature. In the bound populations, the -NH(3)(+) group is surface anchored while the free carboxylate end undergoes librations, implying the carboxylate has small or no contributions to surface binding. When surface water clusters grow bigger with increased hydration, the libration amplitude of the carboxyl end amplifies, until onset of dissolution occurs. Our measurements provide the first direct, comprehensive, molecular-level identification of the bioorganic-inorganic interface, showing binding functional groups, geometric constraints, stoichiometry, and dynamics, both for the adsorbed amino acid and the silica surface.


Assuntos
Alanina/química , Dióxido de Silício/química , Química Bioinorgânica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Orgânicos , Propriedades de Superfície
5.
J Am Chem Soc ; 130(40): 13425-32, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18781749

RESUMO

Biomineralization, particularly the formation of calcium carbonate structures by organisms under ambient conditions, is of vast fundamental and applied interest. Organisms finely control all aspects of the formation of the biomaterials: composition, polymorph, morphology, and macroscopic properties. While in situ molecular-level characterization of the resulting biominerals is a formidable task, solid-state magic angle spinning NMR is one of the most powerful analytical techniques for this purpose. It is employed in this study to elucidate the structure and composition of biogenic calcite formed by Emiliania huxleyi, a unicellular alga distinguished by its exquisitely sculptured calcite cell coverings known as coccoliths. Strain 371 (CCMP) was grown and harvested from (15)N- and (13)C-enriched growth medium, with biosynthetic labeling to enhance the sensitivity of the NMR measurements. Crystalline and interfacial calcite environments were selectively probed using direct and indirect (cross-polarized) (13)C excitation, respectively. Different crystalline environments, in particular structural defect sites at concentrations of up to 1.4% with P and N moieties incorporated, were identified using (13)C rotational-echo double-resonance (REDOR) NMR. REDOR-derived geometrical constraints show that the P and N atoms at the defect sites are 3.2 and 2.3 (+/-0.2) A apart from a crystalline carbon carbonate. The phosphorus and nitrogen moieties within the biogenic calcite are identified as small, non-protonated moieties, attributed to inorganic ions such as PO4(3-) and NO3(-). The carbonates adjacent to these defects are chemically indistinguishable from bulk crystalline carbonates, yet their immediate environments experience reduced rigidity, as reflected by substantial T1((13)CO3(2-)) shortening. Interfacial carbonates, on the other hand, reside in structurally/chemically perturbed environments, as reflected by heterogeneous line broadening. This study is the first to directly unravel evidence on the incorporation of P/N moieties as structural defects within E. huxleyi biogenic calcite, and on the state of the adjacent crystalline carbonates.


Assuntos
Células Eucarióticas/química , Células Eucarióticas/metabolismo , Minerais/química , Minerais/metabolismo , Carbono/química , Carbono/metabolismo , Cristalização , Células Eucarióticas/ultraestrutura , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Nitrogênio/química , Nitrogênio/metabolismo , Fosfatos/química , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...