Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30992393

RESUMO

Dietary fat overload (typical to obesity) increases the risk of pancreatic pathologies through mechanisms yet to be defined. We previously showed that saturated dietary fat induces pancreatic acinar lipotoxicity and cellular stress. The endoplasmic reticulum (ER) of exocrine pancreas cells is highly developed and thus predisposed to stress. We studied the combination of saturated and unsaturated FAs in metabolic and pancreatitis like cerulein (CER)-induced stress states on cellular ER stress.Exocrine pancreas AR42J and rat primary exocrine acinar cells underwent acute (24 h) challenge with different FAs (saturated, monounsaturated) at different concentrations (250 and 500 µM) and in combination with acute CER-induced stress, and were analyzed for fat accumulation, ER stress unfolded protein response (UPR) and immune and enzyme markers. Acute exposure of AR42J and pancreatic acinar cells to different FAs and their combinations increased triglyceride accumulation. Palmitic acid significantly dose-dependently enhanced the UPR, immune factors and pancreatic lipase (PL) levels, as demonstrated by XBP1 splicing and elevation in UPR transcripts and protein levels (Xbp1,Atf6, Atf4, Chop, Tnfα, Tgfß and Il-6). Exposure to high palmitic levels in a CER-induced stress state synergistically increased ER stress and inflammation marker levels. Exposure to oleic acid did not induce ER stress and PL levels and significantly decreased immune factors in an acute CER-induced stress state. Combination of oleic and palmitic acids significantly reduced the palmitic-induced ER stress, but did not affect the immune factor response. We show that combination of monounsaturated and saturated FAs protects from exocrine pancreatic cellular ER stress in both metabolic and CER-induced stress.


Assuntos
Gorduras na Dieta/metabolismo , Estresse do Retículo Endoplasmático , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatite/metabolismo , Células Acinares/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Ceruletídeo , Inflamação/metabolismo , Pancreatite/induzido quimicamente , Ratos , Ratos Sprague-Dawley
2.
Exp Cell Res ; 339(2): 397-406, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26433148

RESUMO

Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfß), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/patologia , Animais , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Pâncreas Exócrino/metabolismo , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...