Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589415

RESUMO

Deuterium oxide (D2O) is water in which the heavier and rare isotope deuterium replaces both hydrogens. We have previously shown that D2O has a distinctly sweet taste, mediated by the T1R2/T1R3 sweet taste receptor. Here, we explore the effect of heavy water on T1R2 and T1R3 subunits. We show that D2O activates T1R3-transfected HEK293T cells similarly to T1R2/T1R3-transfected cells. The response to glucose dissolved in D2O is higher than in water. Mutations of phenylalanine at position 7305.40 in the transmembrane domain of T1R3 to alanine, leucine, or tyrosine impair or diminish activation by D2O, suggesting a critical role for T1R3 TMD domain in relaying the heavy water signal.


Assuntos
Papilas Gustativas , Paladar , Humanos , Óxido de Deutério , Células HEK293 , Glucose/farmacologia
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36806908

RESUMO

We have previously shown that l-glucose, the non-caloric enantiomer of d-glucose, activates the human sweet taste receptor T1R2/T1R3 transiently expressed in HEK293T cells. Here, we show that d- and l-glucose can also activate T1R2 and T1R3 expressed without the counterpart monomer. Serine mutation to alanine in residue 147 in the binding site of T1R3 VFT domain, completely abolishes T1R3S147A activation by either l- or d-glucose, while T1R2/T1R3S147A responds in the same way as T1R2 expressed without its counterpart. We further show that the original T1R2 reference sequence (NM_152232.1) is less sensitive by almost an order of magnitude than the reference sequence at the time this study was performed (NM_152232.4). We find that out of the four differing positions, it is the R317G in the VFT domain of T1R2, that is responsible for this effect in vitro. It is significant for both practical assay sensitivity and because glycine is found in this position in ~20% of the world population. While the effects of the mutations and the partial transfections were similar for d and l enantiomers, their dose-response curves remained distinct, with l-glucose reaching an early plateau.


Assuntos
Glucose , Paladar , Humanos , Glucose/farmacologia , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Sítios de Ligação
3.
Prog Mol Biol Transl Sci ; 193(1): 177-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36357077

RESUMO

Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Ligantes , Transdução de Sinais
4.
Food Chem ; 373(Pt A): 131393, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34715629

RESUMO

Naturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand-receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.041 ± 0.006 M for d-glucose, and 0.032 ± 0.007 M for l-glucose) and similar sweetness intensities at suprathreshold concentrations. We demonstrate that l-glucose acts via the sweet taste receptor TAS1R2/TAS1R3, eliciting a dose-dependent activation in cell-based functional assays. Computational docking of glucose to the VFT domain of TAS1R2 suggests two sub-pockets, each compatible with each of the enantiomers. While some polar residues (Y103, D142, N143, S144, Y215) are unique for sub-pocket A and others (D307, T326, E382, R383) for sub-pocket B, no interaction is unique for only one enantiomer. The many options for creating hydrogen bonds with the hydroxyl moieties of glucose explain how both enantiomers can fit each one of the sub-pockets.


Assuntos
Glucose , Paladar , Humanos , Ligação de Hidrogênio , Receptores Acoplados a Proteínas G/genética , Açúcares
5.
Commun Biol ; 4(1): 440, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824405

RESUMO

Hydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.


Assuntos
Óxido de Deutério/análise , Camundongos Endogâmicos C57BL/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória , Paladar , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Simulação de Dinâmica Molecular , Transfecção , Adulto Jovem
6.
Food Chem ; 315: 126286, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018080

RESUMO

Sweet taste is a cue for calorie-rich food and is innately attractive to animals, including humans. In the context of modern diets, attraction to sweetness presents a significant challenge to human health. Most known sugars and sweeteners bind to the Venus Fly Trap domain of T1R2 subunit of the sweet taste heterodimer. Because the sweet taste receptor structure has not been experimentally solved yet, a possible approach to finding sweet molecules is virtual screening using compatibility of candidate molecules to homology models of sugar-binding site. Here, the constructed structural models, docking and scoring schemes were validated by their ability to rank known sweet-tasting compounds higher than properties-matched random molecules. The best performing models were next used in virtual screening, retrieving recently patented sweeteners and providing novel predictions.


Assuntos
Glucose/química , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
7.
Neurosci Lett ; 700: 56-63, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679682

RESUMO

"Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules.


Assuntos
Paladar/efeitos dos fármacos , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
8.
Sensors (Basel) ; 17(12)2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29232897

RESUMO

Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals' signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed.


Assuntos
Biomimética , Animais , Técnicas Biossensoriais , Odorantes , Olfato , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...