Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(12): 2592-2602.e4, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974847

RESUMO

Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.


Assuntos
Coturnix/fisiologia , Cabeça/fisiologia , Hipocampo/fisiologia , Orientação/fisiologia , Postura/fisiologia , Potenciais de Ação , Animais , Sinais (Psicologia) , Feminino , Células de Grade , Hipocampo/citologia , Masculino , Neurônios/fisiologia , Células de Lugar , Memória Espacial , Navegação Espacial , Fatores de Tempo
2.
Mol Cell Neurosci ; 111: 103601, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545324

RESUMO

We recently introduced behavioral profiling as a translational approach to increase the validity of animal models of posttraumatic stress disorder (PTSD). Behavioral profiling utilizes the response of a 'normal population' of control animals and compares the performance of animals with a history of traumatic stress in different behavioral tests that can capture PTSD-like symptoms. Thus, affected, PTSD-like individuals can be subdivided from resilient trauma-exposed animals. While in our recent study we focused mainly on tests for activity and anxiety, we now expand the behavioral tests battery and include also fear memory and extinction tasks as well as a spatial object recognition test in our behavioral profiling approach. Utilizing underwater trauma as the traumatic event, we found that only a small subset of animals exposed to underwater trauma showed lasting increases in anxiety-like behavior and heightened emotional memory formation. Adding juvenile stress as a model for childhood adversity increased the prevalence of such affected animals and furthermore and induced additional cognitive deficits in a subgroup of such emotionally affected individuals. In addition, multiple affected individual rats displayed increased local circuit activity in the dorsal dentate gyrus, as measured in vivo with paired pulse protocols in anesthetized animals. Together, our findings highlight behavioral profiling, refined by including multiple behavioral tests, as a valid tool to identify PTSD-like vs. resilient individual animals and further suggest that enhanced local inhibition in specific circuits of the dorsal dentate gyrus may be associated with the observed symptoms.


Assuntos
Comportamento Animal , Giro Denteado/fisiopatologia , Inibição Neural , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Masculino , Memória , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...