Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
NPJ Breast Cancer ; 8(1): 126, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446794

RESUMO

Despite the biological and therapeutic relevance of CDK4/6 for the treatment of HR+, HER2- advanced breast cancer, the detailed mode of action of CDK4/6 inhibitors is not completely understood. Of particular interest, phosphorylation of CDK4 at T172 (pT172) is critical for generating the active conformation, yet no such crystal structure has been reported to date. We describe here the x-ray structure of active CDK4-cyclin D3 bound to the CDK4/6 inhibitor abemaciclib and discuss the key aspects of the catalytically-competent complex. Furthermore, the effect of CDK4/6 inhibitors on CDK4 T172 phosphorylation has not been explored, despite its role as a potential biomarker of CDK4/6 inhibitor response. We show mechanistically that CDK4/6i stabilize primed (pT172) CDK4-cyclin D complex and selectively displace p21 in responsive tumor cells. Stabilization of active CDK4-cyclin D1 complex can lead to pathway reactivation following alternate dosing regimen. Consequently, sustained binding of abemaciclib to CDK4 leads to potent cell cycle inhibition in breast cancer cell lines and prevents rebound activation of downstream signaling. Overall, our study provides key insights demonstrating that prolonged treatment with CDK4/6 inhibitors and composition of the CDK4/6-cyclin D complex are both critical determinants of abemaciclib efficacy, with implications for this class of anticancer therapy.

3.
Nat Commun ; 9(1): 1645, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695780

RESUMO

Activation of free fatty acid receptor 1 (GPR40) by synthetic partial and full agonists occur via distinct allosteric sites. A crystal structure of GPR40-TAK-875 complex revealed the allosteric site for the partial agonist. Here we report the 2.76-Å crystal structure of human GPR40 in complex with a synthetic full agonist, compound 1, bound to the second allosteric site. Unlike TAK-875, which acts as a Gαq-coupled partial agonist, compound 1 is a dual Gαq and Gαs-coupled full agonist. compound 1 binds in the lipid-rich region of the receptor near intracellular loop 2 (ICL2), in which the stabilization of ICL2 by the ligand is likely the primary mechanism for the enhanced G protein activities. The endogenous free fatty acid (FFA), γ-linolenic acid, can be computationally modeled in this site. Both γ-linolenic acid and compound 1 exhibit positive cooperativity with TAK-875, suggesting that this site could also serve as a FFA binding site.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Incretinas/metabolismo , Secreção de Insulina , Receptores Acoplados a Proteínas G/agonistas , Sítio Alostérico/genética , Animais , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/metabolismo , Sinergismo Farmacológico , Células HEK293 , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Ácido gama-Linolênico/metabolismo
4.
PLoS One ; 13(1): e0190850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29329326

RESUMO

To date, IL-17A antibodies remain the only therapeutic approach to correct the abnormal activation of the IL-17A/IL-17R signaling complex. Why is it that despite the remarkable success of IL-17 antibodies, there is no small molecule antagonist of IL-17A in the clinic? Here we offer a unique approach to address this question. In order to understand the interaction of IL-17A with its receptor, we combined peptide discovery using phage display with HDX, crystallography, and functional assays to map and characterize hot regions that contribute to most of the energetics of the IL-17A/IL-17R interaction. These functional maps are proposed to serve as a guide to aid in the development of small molecules that bind to IL-17A and block its interaction with IL-17RA.


Assuntos
Colífagos/metabolismo , Interleucina-17/metabolismo , Peptídeos/metabolismo , Receptores de Interleucina-17/metabolismo , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Células HT29 , Humanos , Interleucina-17/química , Modelos Moleculares , Receptores de Interleucina-17/química , Ressonância de Plasmônio de Superfície
5.
Protein Sci ; 25(1): 30-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26293815

RESUMO

We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development.


Assuntos
Cristalografia por Raios X , Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Conformação Proteica , Proteínas/química
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 844-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849395

RESUMO

Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-ß signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Šresolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-ß signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.


Assuntos
Proteínas de Drosophila/química , Drosophila/química , Proteínas Smad/química , Proteína Smad2/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Proteínas Smad/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
Biochem J ; 463(1): 145-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014715

RESUMO

The TenA protein family occurs in prokaryotes, plants and fungi; it has two subfamilies, one (TenA_C) having an active-site cysteine, the other (TenA_E) not. TenA_C proteins participate in thiamin salvage by hydrolysing the thiamin breakdown product amino-HMP (4-amino-5-aminomethyl-2-methylpyrimidine) to HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine); the function of TenA_E proteins is unknown. Comparative analysis of prokaryote and plant genomes predicted that (i) TenA_E has a salvage role similar to, but not identical with, that of TenA_C and (ii) that TenA_E and TenA_C also have non-salvage roles since they occur in organisms that cannot make thiamin. Recombinant Arabidopsis and maize TenA_E proteins (At3g16990, GRMZM2G080501) hydrolysed amino-HMP to HMP and, far more actively, hydrolysed the N-formyl derivative of amino-HMP to amino-HMP. Ablating the At3g16990 gene in a line with a null mutation in the HMP biosynthesis gene ThiC prevented its rescue by amino-HMP. Ablating At3g16990 in the wild-type increased sensitivity to paraquat-induced oxidative stress; HMP overcame this increased sensitivity. Furthermore, the expression of TenA_E and ThiC genes in Arabidopsis and maize was inversely correlated. These results indicate that TenA_E proteins mediate amidohydrolase and aminohydrolase steps in the salvage of thiamin breakdown products. As such products can be toxic, TenA_E proteins may also pre-empt toxicity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidrolases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Tiamina/metabolismo , Zea mays/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Herbicidas/farmacologia , Hidrolases/genética , Proteínas Ferro-Enxofre/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Paraquat/farmacologia , Tiamina/genética , Zea mays/genética
8.
J Synchrotron Radiat ; 21(Pt 4): 679-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24971961

RESUMO

BL13-XALOC is currently the only macromolecular crystallography beamline at the 3 GeV ALBA synchrotron near Barcelona, Spain. The optics design is based on an in-vacuum undulator, a Si(111) channel-cut crystal monochromator and a pair of KB mirrors. It allows three main operation modes: a focused configuration, where both mirrors can focus the beam at the sample position to 52 µm × 5.5 µm FWHM (H × V); a defocused configuration that can match the size of the beam to the dimensions of the crystals or to focus the beam at the detector; and an unfocused configuration, where one or both mirrors are removed from the photon beam path. To achieve a uniform defocused beam, the slope errors of the mirrors were reduced down to 55 nrad RMS by employing a novel method that has been developed at the ALBA high-accuracy metrology laboratory. Thorough commissioning with X-ray beam and user operation has demonstrated an excellent energy and spatial stability of the beamline. The end-station includes a high-accuracy single-axis diffractometer, a removable mini-kappa stage, an automated sample-mounting robot and a photon-counting detector that allows shutterless operation. The positioning tables of the diffractometer and the detector are based on a novel and highly stable design. This equipment, together with the operation flexibility of the beamline, allows a large variety of types of crystals to be tackled, from medium-sized crystals with large unit-cell parameters to microcrystals. Several examples of data collections measured during beamline commissioning are described. The beamline started user operation on 18 July 2012.

9.
PLoS One ; 7(10): e47886, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082227

RESUMO

The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an "open" conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the ß-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.


Assuntos
Hidrolases/química , Redes e Vias Metabólicas , Mycoplasma penetrans/enzimologia , Ornitina Carbamoiltransferase/química , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Multimerização Proteica , Especificidade por Substrato
10.
J Struct Funct Genomics ; 13(3): 163-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22843344

RESUMO

Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Dobramento de Proteína , Staphylococcus aureus/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus subtilis/classificação , Bacillus subtilis/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia por Raios X , Genes Bacterianos , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade da Espécie , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Relação Estrutura-Atividade
11.
Cell Host Microbe ; 8(4): 331-42, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20951967

RESUMO

Borrelia burgdorferi, the agent of Lyme disease, is unusual as it contains free cholesterol and cholesterol glycolipids. It is also susceptible to complement-independent bactericidal antibodies, such as CB2, a monoclonal IgG1 against outer surface protein B (OspB). We find that the bactericidal action of CB2 requires the presence of cholesterol glycolipids and cholesterol. Ultrastructural, biochemical, and biophysical analysis revealed that the bacterial cholesterol glycolipids exist as lipid raft-like microdomains in the outer membrane of cultured and mouse-derived B. burgdorferi and in model membranes from B. burgdorferi lipids. The order and size of the microdomains are temperature sensitive and correlate with the bactericidal activity of CB2. This study demonstrates the existence of cholesterol-containing lipid raft-like microdomains in a prokaryote, and we suggest that the temperature dependence of B. burgdorferi lipid raft organization may have significant implications in the transmission cycle of the spirochetes which are exposed to a range of temperatures.


Assuntos
Anticorpos Monoclonais/imunologia , Borrelia burgdorferi/imunologia , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Vesículas Citoplasmáticas/metabolismo , Glicolipídeos/metabolismo , Doença de Lyme/imunologia , Camundongos , Camundongos Endogâmicos C3H
12.
J Struct Funct Genomics ; 9(1-4): 41-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19039680

RESUMO

The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.


Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Salmonella typhimurium/genética , Tiorredoxinas/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Salmonella typhimurium/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
J Mol Biol ; 382(2): 402-22, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18647606

RESUMO

Cystoviruses are a class of enveloped double-stranded RNA viruses that use a multiprotein polymerase complex (PX) to replicate and transcribe the viral genome. Although the structures of the polymerase and ATPase components of the cystoviral PX are known and their functional behavior is understood to a large extent, no atomic-resolution structural information is available for the major capsid protein P1 that defines the overall structure and symmetry of the viral capsid and the essential protein P7. Toward obtaining a complete structural and functional understanding of the cystoviral PX, we have obtained the structure of P7 from the cystovirus phi 12 at a resolution of 1.8 A. The N-terminal core region (1-129) of P7 forms a novel homodimeric alpha/beta-fold having structural similarities with BRCT domains implicated in multiple protein-protein interactions in DNA repair proteins. Our results, combined with the known role of P7 in stabilizing the nucleation complex during capsid assembly, hint toward its participation in key protein-protein interactions within the cystoviral PX. Additionally, we have found through solution NMR studies that the C-terminal tail of P7 (130-169) that is essential for virus viability, although highly disordered, contains a nascent helix. We demonstrate for the first time, through NMR titrations, that P7 is capable of interacting with RNA. We find that both the N-terminal core and the dynamic C-terminal tail of P7 play a role in RNA recognition. This interaction leads to a significant reduction of the degree of disorder in the C-terminal tail. Given the requirement of P7 in maintaining genome packaging efficiency and transcriptional fidelity, our data suggest a central biological role for P7-RNA interactions.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cystoviridae/química , Conformação Proteica , Sequência de Aminoácidos , Bacteriófagos , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , RNA/química , RNA/metabolismo , Alinhamento de Sequência
14.
EMBO J ; 26(24): 5153-66, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18034161

RESUMO

The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 A crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/genética , GMP Cíclico/metabolismo , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade
15.
J Biol Chem ; 282(43): 31534-41, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17699518

RESUMO

The tegument is a layer of proteins between the nucleocapsid and the envelope of herpesviruses. The functions of most tegument proteins are still poorly understood. In murine gammaherpesvirus 68, ORF52 is an abundant tegument protein of 135 residues that is required for the assembly and release of infectious virus particles. To help understand the molecular basis for the function of this protein, we have determined its crystal structure at 2.1 A resolution. The structure reveals a dimeric association of this protein. Interestingly, an N-terminal alpha-helix that assumes different conformation in the two monomers of the dimer mediates the formation of an asymmetrical tetramer and contains many highly conserved residues. Structural and sequence analyses suggest that this helix is more likely involved in interactions with other components of the tegument or nucleocapsid of the virus and that ORF52 functions as a symmetrical dimer. The asymmetrical tetramer of ORF52 may be a "latent" form of the protein, when it is not involved in virion assembly. The self-association of ORF52 has been confirmed by co-immunoprecipitation and fluorescence resonance energy transfer experiments. Deletion of the N-terminal alpha-helix, as well as mutation of the conserved Arg(95) residue, abolished the function of ORF52. The results of the functional studies are fully consistent with the structural observations and indicate that the N-terminal alpha-helix is a crucial site of interaction for ORF52.


Assuntos
Gammaherpesvirinae/metabolismo , Fases de Leitura Aberta , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Gammaherpesvirinae/química , Gammaherpesvirinae/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Rim/citologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Testes de Precipitina , Conformação Proteica , Estrutura Secundária de Proteína , Transfecção , Proteínas Virais/química , Proteínas Virais/genética
16.
Nature ; 439(7078): 879-84, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16482161

RESUMO

Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coli AlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by S(N)2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(II) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 A. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.


Assuntos
Reparo do DNA , DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , RNA/metabolismo , Alquilação , Anaerobiose , Sítios de Ligação , Catálise , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Maleabilidade , Conformação Proteica
17.
J Biol Chem ; 281(11): 7533-45, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16330546

RESUMO

The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 A resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name "DRE-TIM metallolyases" for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and can guide subsequent studies directed at definitive experimental elucidation of this enzyme's reaction mechanism.


Assuntos
Oxo-Ácido-Liases/química , 2-Isopropilmalato Sintase/química , Sequência de Aminoácidos , Ácido Aspártico/química , Bacillus subtilis/enzimologia , Sítios de Ligação , Brucella melitensis/enzimologia , Carbono/química , Catálise , Domínio Catalítico , Cátions , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Cinética , Luz , Lisina/química , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Mutação Puntual , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Estereoisomerismo
18.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 5): 589-98, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15858269

RESUMO

TenA (transcriptional enhancer A) has been proposed to function as a transcriptional regulator based on observed changes in gene-expression patterns when overexpressed in Bacillus subtilis. However, studies of the distribution of proteins involved in thiamine biosynthesis in different fully sequenced genomes have suggested that TenA may be an enzyme involved in thiamine biosynthesis, with a function related to that of the ThiC protein. The crystal structure of PF1337, the TenA homolog from Pyrococcus furiosus, is presented here. The protomer comprises a bundle of alpha-helices with a similar tertiary structure and topology to that of human heme oxygenase-1, even though there is no significant sequence homology. A solvent-sequestered cavity lined by phylogenetically conserved residues is found at the core of this bundle in PF1337 and this cavity is observed to contain electron density for 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate, the product of the ThiC enzyme. In contrast, the modestly acidic surface of PF1337 shows minimal levels of sequence conservation and a dearth of the basic residues that are typically involved in DNA binding in transcription factors. Without significant conservation of its surface properties, TenA is unlikely to mediate functionally important protein-protein or protein-DNA interactions. Therefore, the crystal structure of PF1337 supports the hypothesis that TenA homologs have an indirect effect in altering gene-expression patterns and function instead as enzymes involved in thiamine metabolism.


Assuntos
Pyrococcus furiosus/química , Pyrococcus furiosus/enzimologia , Tiamina/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-Atividade
19.
J Mol Biol ; 345(3): 579-98, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15581900

RESUMO

Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.


Assuntos
Acetatos/metabolismo , Álcool Desidrogenase/metabolismo , Drosophila melanogaster/enzimologia , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Drosophila melanogaster/genética , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Estereoisomerismo , Relação Estrutura-Atividade
20.
J Mol Biol ; 344(2): 549-65, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15522304

RESUMO

The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.


Assuntos
Sequência Conservada/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Enxofre/metabolismo , Sequência de Aminoácidos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Cristalografia por Raios X , Cisteína/química , Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Oxirredução , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Soluções , Análise Espectral Raman , Xantina Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...