Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 238: 114514, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700596

RESUMO

The Ca2+/calmodulin-mediated phosphatase activity of calcineurin (CN) integrates calcium-mediated signaling with gene expression programs involved in the control of essential cellular processes in health and disease, such as the immune response and the pathogenesis of cancer progression and metastasis. In addition, CN is the target of the immunosuppressive drugs cyclosporine A (CsA) and FK-506 which are the cornerstone of immunosuppressant therapy. Unfortunately, long-term administration of these drugs results in severe side effects. Herein, we describe the design, synthesis and evaluation of new synthetic compounds that are capable of inhibiting NFATc activity in a dose-dependent manner, without interfering on CN phosphatase activity. These compounds were designed using the structure-based pharmacophore model of a peptide-derived PxIxIT sequence binding to calcineurin A subunit. Moreover, these compounds inhibit NFATc-dependent cytokine gene expression, secretion and proliferation of human T CD4+ cells. More importantly, compound 5a reduces tumor weight and shows a tendency to reduce tumor angiogenesis in an orthotopic immunocompetent mouse model of triple negative breast cancer, suggesting that 5a has tumor suppressor activity. These findings validate compound 5a as an agent with therapeutic activity against CN-NFATc and highlight its potential as a tool for drug development with therapeutic purposes.


Assuntos
Calcineurina , Neoplasias de Mama Triplo Negativas , Animais , Calcineurina/química , Calcineurina/genética , Calcineurina/metabolismo , Inibidores de Calcineurina , Ciclosporina/farmacologia , Humanos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Adv Mater ; 25(14): 2066-70, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23418006

RESUMO

A facile one-step polymerization strategy is explored to achieve novel catechol-based materials. Depending on the functionality of the catechol, the as-prepared product can be used to modify at will the surface tension of nano and bulk structures, from oleo-/hydrophobic to highly hydrophilic. A hydrophobic catechol prepared thus polymerized shows the ability to self-assemble as solid nanoparticles with sticky properties in polar solvent media. Such a versatile concept is ideal for the development of catechol-based multifunctional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...