Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 889623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692299

RESUMO

Research and development of Precision Livestock Farming (PLF) is booming, partly due to hopes and claims regarding the benefits of PLF for animal welfare. These claims remain largely unproven, however, as only few PLF technologies focusing on animal welfare have been commercialized and adopted in practice. The prevailing enthusiasm and optimism about PLF innovations may be clouding the perception of possible threats that PLF may pose to farm animal welfare. Without claiming to be exhaustive, this paper lists 12 potential threats grouped into four categories: direct harm, indirect harm via the end-user, via changes to housing and management, and via ethical stagnation or degradation. PLF can directly harm the animals because of (1) technical failures, (2) harmful effects of exposure, adaptation or wearing of hardware components, (3) inaccurate predictions and decisions due to poor external validation, and (4) lack of uptake of the most meaningful indicators for animal welfare. PLF may create indirect effects on animal welfare if the farmer or stockperson (5) becomes under- or over-reliant on PLF technology, (6) spends less (quality) time with the animals, and (7) loses animal-oriented husbandry skills. PLF may also compromise the interests of the animals by creating transformations in animal farming so that the housing and management are (8) adapted to optimize PLF performance or (9) become more industrialized. Finally, PLF may affect the moral status of farm animals in society by leading to (10) increased speciesism, (11) further animal instrumentalization, and (12) increased animal consumption and harm. For the direct threats, possibilities for prevention and remedies are suggested. As the direction and magnitude of the more indirect threats are harder to predict or prevent, they are more difficult to address. In order to maximize the potential of PLF for improving animal welfare, the potential threats as well as the opportunities should be acknowledged, monitored and addressed.

2.
Res Vet Sci ; 125: 425-433, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29174287

RESUMO

Analysing behaviours can provide insight into the health and overall well-being of dairy cows. Automatic monitoring systems using e.g., accelerometers are becoming increasingly important to accurately quantify cows' behaviours as the herd size increases. The aim of this study is to automatically classify cows' behaviours by comparing leg- and neck-mounted accelerometers, and to study the effect of the sampling rate and the number of accelerometer axes logged on the classification performances. Lying, standing, and feeding behaviours of 16 different lactating dairy cows were logged for 6h with 3D-accelerometers. The behaviours were simultaneously recorded using visual observation and video recordings as a reference. Different features were extracted from the raw data and machine learning algorithms were used for the classification. The classification models using combined data of the neck- and the leg-mounted accelerometers have classified the three behaviours with high precision (80-99%) and sensitivity (87-99%). For the leg-mounted accelerometer, lying behaviour was classified with high precision (99%) and sensitivity (98%). Feeding was classified more accurately by the neck-mounted versus the leg-mounted accelerometer (precision 92% versus 80%; sensitivity 97% versus 88%). Standing was the most difficult behaviour to classify when only one accelerometer was used. In addition, the classification performances were not highly influenced when only X, X and Z, or Z and Y axes were used for the classification instead of three axes, especially for the neck-mounted accelerometer. Moreover, the accuracy of the models decreased with about 20% when the sampling rate was decreased from 1Hz to 0.05Hz.


Assuntos
Acelerometria/veterinária , Comportamento Animal , Bovinos/fisiologia , Monitorização Fisiológica/veterinária , Bem-Estar do Animal , Animais , Feminino , Monitorização Fisiológica/instrumentação , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...