Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 189: 114711, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807047

RESUMO

The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.


Assuntos
Plásticos Biodegradáveis , Microbiota , Polímeros , Imersão , Poliésteres , Plásticos/metabolismo , Biofilmes
2.
Materials (Basel) ; 15(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013752

RESUMO

Scaffolds can be defined as 3D architectures with specific features (surface properties, porosity, rigidity, biodegradability, etc.) that help cells to attach, proliferate, and to differentiate into specific lineage. For bone regeneration, rather high mechanical properties are required. That is why polylactic acid (PLA) and PLA/hydroxyapatite (HA) scaffolds (10 wt.%) were produced by a peculiar fused filament fabrication (FFF)-derived process. The effect of the addition of HA particles in the scaffolds was investigated in terms of morphology, biological properties, and biodegradation behavior. It was found that the scaffolds were biocompatible and that cells managed to attach and proliferate. Biodegradability was assessed over a 5-month period (according to the ISO 13781-Biodegradability norm) through gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and compression tests. The results revealed that the presence of HA in the scaffolds induced a faster and more complete polymer biodegradation, with a gradual decrease in the molar mass (Mn) and compressive mechanical properties over time. In contrast, the Mn of PLA only decreased during the processing steps to obtain scaffolds (extrusion + 3D-printing) but PLA scaffolds did not degrade during conditioning, which was highlighted by a high retention of the mechanical properties of the scaffolds after conditioning.

3.
Int J Pharm ; 618: 121663, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35292398

RESUMO

In the pharmaceutical field, there is a growing interest in manufacturing of drug delivery dosage forms adapted to the needs of a large variety of patients. 3D printing has proven to be a powerful tool allowing the adaptation of immediate drug delivery dosage forms. However, there are still few studies focusing on the adaptation of long-acting dosage forms for patient suffering of neurological diseases. In this study, paliperidone palmitate (PP) was chosen as a model drug in combination with different polymers adapted for fused-deposition modeling (FDM). The impact of different printing parameters on the release of PP were investigated. The layer thickness and the infill percentage were studied using a quality by design approach. Indeed, by defining the critical quality attributes (CQA), a proof of concept of a prediction system, and a quality control system were studied through designs of experiments (DoE). The first part of this study was dedicated to the release of PP from a fix geometry. In the second part, the prediction system was developed to require only surface and surface to volume ratio. From that point, it was possible to get rid of a fix geometry and predict the amount of PP released from complex architectures.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Humanos , Palmitato de Paliperidona , Preparações Farmacêuticas , Polímeros , Comprimidos
4.
Int J Pharm ; 618: 121662, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35292399

RESUMO

In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers. Paliperidone palmitate (PP), a heat sensitive drug prescribed in the treatment of schizophrenia was chosen as model drug. After extrusion, different formulations were characterized using DSC and XRD. Then, an in vitro dissolution test was carried out to discriminate the formulation allowing a sustained drug release of PP. The formulation showing a sustained drug release of the drug was 3D printed as an implantable dosage form. By modulating the infill, the release profile was related to the proper design of tailored dosage form and not solely to the solubility of the drug. Indeed, different release profiles were achieved over 90 days using only one formulation. In addition, a stability test was performed on the 3D printed implants for 3 months. The results showed the stability of the amorphous state of PP, independently of the temperature as well as the integrity of the matrix and the drug.


Assuntos
Excipientes , Palmitato de Paliperidona , Liberação Controlada de Fármacos , Temperatura Alta , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos
5.
J Hazard Mater ; 419: 126526, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34328083

RESUMO

Different plastic types considered as compostable are found on the market such as petro-based (e.g., polybutylene adipate terephthalate (PBAT)) or bio-based plastics (e.g., polylactic acid, (PLA)). Even if their degradation has been confirmed in industrial compost conditions, investigation of their degradation in natural marine environment has been limited. To better understand biodegradation into natural marine environment, commercial compostable (PBAT, semi-crystalline and amorphous PLA) and non-compostable polymers (low density polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride) were submerged in situ on the sediment and in the water column in the Mediterranean Sea. These samples were studied by chemical and microbiological approaches. After 82 days of immersion, no significant bacterial degradation of the different polymers was observed, except some abiotic alterations of PBAT and LDPE probably due to a photooxidation process. However, after 80 days in an enrichment culture containing plastic films as a main carbon source, Marinomonas genus was specifically selected on the PBAT and a weight loss of 12% was highlighted. A better understanding of the bacterial community colonizing these plastics is essential for an eco-design of new biodegradable polymers to allow a rapid degradation in aquatic environment.


Assuntos
Compostagem , Polímeros , Biodegradação Ambiental , Biofilmes , Plásticos
6.
Int J Pharm ; 603: 120702, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33989752

RESUMO

In this work, the versatility of pressure extrusion-based printing (PEBP) was used as 3D printing process to create long-acting implantable dosage forms. Different release profiles were achieved based on the drug concentration, the way of preparation and the design of the final implants. Polycaprolactone (PCL) was used as the polymer to sustain the release of the loaded drug. Paliperidone palmitate (PP), a BCS Class II drug, used in the treatment of schizophrenia, was used as the model drug. Two PP concentrations (e.g. 5 and 10% w/w) as well as two methods of preparation before the 3D printing process, mortar and pestle and cryogenic milling, were evaluated. The amorphous state of PP was obtained by using cryogenic milling and it was maintained after printing. Two designs were printed by PEBP, a ring and a disk, to evaluate their impact on the release profile of PP. During the in vitro dissolution tests, the implant design, the amount of PP, as well as the crystalline or amorphous state of PP have shown to influence the drug release profile. During the successive steps of preparation of the long-acting implants, blends and raw materials were characterized by DSC and XRD.


Assuntos
Palmitato de Paliperidona , Impressão Tridimensional , Formas de Dosagem , Liberação Controlada de Fármacos , Polímeros
7.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918508

RESUMO

Due to the added value conferred by zinc oxide (ZnO) nanofiller, e.g., UV protection, antibacterial action, gas-barrier properties, poly(lactic acid) (PLA)-ZnO nanocomposites show increased interest for utilization as films, textile fibers, and injection molding items. The study highlights the beneficial effects of premixing ZnO in PLA under given conditions and its use as masterbatch (MB), a very promising alternative manufacturing technique. This approach allows reducing the residence time at high processing temperature of the thermo-sensitive PLA matrix in contact of ZnO nanoparticles known for their aptitude to promote degradation effects onto the polyester chains. Various PLA-ZnO MBs containing high contents of silane-treated ZnO nanoparticles (up to 40 wt.% nanofiller specifically treated with triethoxycaprylylsilane) were produced by melt-compounding using twin-screw extruders. Subsequently, the selected MBs were melt blended with pristine PLA to produce nanocomposite films containing 1-3 wt.% ZnO. By comparison to the more traditional multi-step process, the MB approach allowed the production of nanocomposites (films) having improved processing and enhanced properties: PLA chains displaying higher molecular weights, improved thermal stability, fine nanofiller distribution, and thermo-mechanical characteristic features, while the UV protection was confirmed by UV-vis spectroscopy measurements. The MB alternative is viewed as a promising flexible technique able to open new perspectives to produce more competitive multifunctional PLA-ZnO nanocomposites.

8.
Mar Pollut Bull ; 167: 112295, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33799154

RESUMO

The substitution of petrochemical plastics by bio-based and biodegradable plastics are in need of an evaluation for the potential toxic impacts that they can have on marine wildlife. This study aims to assess the toxicological effects of polylactic acid microparticles at two concentrations, 10 and 100 µg/L, during 8 days on the blue mussel, Mytilus edulis. No significant oxidative stress (catalase, glutathione-S-transferase and superoxide dismutase activities), neurotoxicity (acetylcholinesterase), or immunotoxicity (lysosomal membrane stability and acid phosphatase activity) were detectable. The multivariate analysis of metabolomic data allowed us to differentiate the individuals according to the exposure. From the loading plot of OPLS-DA, 48 ions down-regulated in the individuals exposed to microplastics. They were identified based on HRMS data as glycerophospholipids.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Catalase , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Int J Pharm ; 569: 118581, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31369828

RESUMO

The purpose of this work was to investigate the feasibility to manufacture enteric capsules, which could be used in compounding pharmacies, by fused-deposition modeling. It is well-known that conventional enteric dip coating of capsules in community pharmacies or hospitals is a time-consuming process which is characterized by an erratic efficacy. Fused-deposition modeling was selected as a potential 3D printing method due its ease and low-cost implementation. Before starting to print the capsules, an effective sealing system was designed via a computer-aided design program. Hot melt extrusion was used to make printable enteric filaments. They were made of the enteric polymer, a plasticizer and a thermoplastic polymer, namely Eudragit® L100-55, polyethylene glycol 400 and polylactic acid, respectively. Riboflavine-5'-phosphate was selected as a coloured drug model to compare the efficacy of the 3D printed capsules to that of enteric dip coated capsules as they are currently produced in community pharmacies and hospitals. Different parameters of fabrication which could influence the dissolution profile of the model drug, such as the layer thickness or post-processing step, were studied. It was demonstrated that our 3D printed enteric capsules did not release the drug for 2 h in acid medium (pH 1.2). However, they completely dissolved within 45 min at pH 6.8 which allowed the release of a minimal amount of 85% w/w of drug as it was recommended by the European Pharmacopoeia 9th Edition for enteric products.


Assuntos
Composição de Medicamentos/métodos , Impressão Tridimensional , Cápsulas , Excipientes/química , Estudos de Viabilidade , Farmácias , Plastificantes/química , Poliésteres/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química
10.
J Hazard Mater ; 380: 120899, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326835

RESUMO

Most plastics are released to the environment in landfills and around 32% end up in the sea, inducing large ecological and health impacts. The plastics constitute a physical substrate and potential carbon source for microorganisms. The present study compares the structures of bacterial communities from floating plastics, sediment-associated plastics and sediments from the Mediterranean Sea. The 16S rRNA microbiome profiles of surface and sediment plastic-associated microbial biofilms from the same geographic location differ significantly, with the omnipresence of Bacteroidetes and Gammaproteobacteria. Our research confirmed that plastisphere hosts microbial communities were environmental distinct niche. In parallel, this study used environmental samples to investigate the enrichment of potential plastic-degrading bacteria with Low Density PolyEthylene (LDPE), PolyEthylene Terephthalate (PET) and PolyStyrene (PS) plastics as the sole carbon source. In this context, we showed that the bacterial community composition is clearly plastic nature dependent. Hydrocarbon-degrading bacteria such as Alcanivorax, Marinobacter and Arenibacter genera are enriched with LDPE and PET, implying that these bacteria are potential players in plastic degradation. Finally, our data showed for the first time the ability of Alcanivorax borkumensis to form thick biofilms specifically on LDPE and to degrade this petroleum-based plastic.


Assuntos
Alcanivoraceae/metabolismo , Ecossistema , Plásticos , Polietileno/metabolismo , Água do Mar/microbiologia , Biodegradação Ambiental
11.
ACS Omega ; 3(1): 1069-1080, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457949

RESUMO

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions. For this purpose, a poly(d-lactide)-b-poly(glycidyl methacrylate) block copolymer (PDLA-b-PGMA) was first synthesized via the combination of ring-opening polymerization and atom-transfer radical polymerization. NMR spectroscopy and size-exclusion chromatography analysis confirmed a complete control over the copolymer synthesis. The SNPs were then mixed up with the copolymer for producing a PDLA-b-PGMA/SNPs masterbatch. The masterbatch was processed by solvent casting for which a particular attention was given to the solvent selection to preserve SNPs morphology as evidenced by transmission electron microscopy. Near-infrared spectroscopy was used to highlight the copolymer-SNPs supramolecular interactions mostly via hydrogen bonding. The prepared masterbatch was melt-blended with virgin PLLA and then thin films of PLLA/PDLA-b-PGMA/SNPs nanocomposites (ca. 600 µm) were melt-processed by compression molding. The resulting nanocomposite films were deeply characterized by thermogravimetric analysis and differential scanning calorimetry. Our findings suggest that supramolecular interactions based on stereocomplexation between the PLLA matrix and the PDLA block of the copolymer had a synergetic effect allowing the preservation of SNPs nanoplatelets and their morphology during melt processing. Quartz crystal microbalance and dynamic mechanical thermal analysis suggested a promising potential of the stereocomplex supramolecular approach in tuning PLLA/SNPs water vapor uptake and mechanical properties together with avoiding PLLA/SNPs degradation during melt processing.

12.
J Nanosci Nanotechnol ; 8(4): 1707-13, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18572568

RESUMO

The influence of the chemical structure of alkylammonium organo-modifying montmorillonite clays on the ability to form nanocomposites by melt blending, depending on the processing temperature and the organoclay thermal treatment, has been investigated. On one side chlorinated polyethylene/Cloisite 30B (nano)composite has been prepared by melt intercalation at 175 degrees C and its wide angle X-ray diffraction pattern revealed that the peak characteristic of the interlayer spacing of the organoclay was shifted to lower d-spacing, indicating a collapse of the organoclay structure. On the other side, (nano)composites based on ethylene-vinyl acetate copolymer/Cloisite 30B have been prepared by melt intercalation at 140 degrees C. At this temperature, exfoliation was observed with the as-received organoclay while the same organo-modified clay, simply dried at 180 degrees C for 2 hours, induced again the formation of a composite with a collapsed structure. The effect of the Cloisite 30B thermal treatment on the morphology and mechanical properties of ethylene-vinyl acetate-based (nano)composites was investigated using wide angle X-ray diffraction and tensile tests. In order to shed some light on the origin of this clay interlayer collapse, organoclay modified with various ammonium cations bearing long alkyl chains with different amounts of unsaturations were studied using wide angle X-ray diffraction and X-ray photoelectron spectroscopy before and after thermal treatment at 180 degrees C for 2 hours. Isothermal thermogravimetric analysis of all organoclays was also investigated. The layers collapse effect is discussed depending upon the level of unsatured hydrocarbon present in the organic surfactant.


Assuntos
Silicatos de Alumínio/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polietileno/química , Argila , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Temperatura de Transição
13.
Langmuir ; 24(5): 2072-80, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18211107

RESUMO

Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly(epsilon-caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...