Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 702, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838800

RESUMO

During Arabidopsis seed coat development, copious amounts of mucilage polysaccharides are produced in the epidermal cells. When hydrated on imbibition, these polysaccharides expand and are released to encapsulate the seed as a two-layered hydrogel. Polysaccharides are synthesized from UDP-sugars by glycosyltransferases (GTs) and several GTs, with differing activities, have been identified that contribute to mucilage polysaccharide synthesis. How these GTs orchestrate production of the complex polysaccharides found in mucilage remains to be determined. In this study, we generated a range of multiple GT mutants using either CRISPR/Cas9 targeted mutation or genetic crosses of existing T-DNA insertion mutants. Four traits for mucilage amounts or macromolecular properties were examined for four replicate seed lots from 31 different GT mutant combinations. This data provides a valuable resource for future genetic, biochemical, structural, and functional studies of the roles and properties of polysaccharides present in Arabidopsis mucilage and the relative contributions of different GTs to mucilage production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosiltransferases/genética , Mucilagem Vegetal/genética , Polissacarídeos
2.
Mol Biol Evol ; 38(8): 3445-3458, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33878189

RESUMO

The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.


Assuntos
Arabidopsis/genética , Genoma Mitocondrial , Seleção Genética , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grupo dos Citocromos c/metabolismo , Desenvolvimento Embrionário , Biossíntese de Proteínas , Splicing de RNA
3.
Front Plant Sci ; 11: 611643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552104

RESUMO

Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.

4.
Proc Natl Acad Sci U S A ; 117(1): 741-751, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871212

RESUMO

Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.


Assuntos
Arabidopsis/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Germinação/fisiologia , Mitocôndrias/metabolismo , Sementes/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Oxirredução , Oxigênio/metabolismo , Plantas Geneticamente Modificadas , Proteômica/métodos , Sementes/citologia , Sementes/crescimento & desenvolvimento , Tiorredoxina h/genética , Tiorredoxina h/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
5.
Plant J ; 99(2): 302-315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900791

RESUMO

During the life cycle of plants, seedlings are considered vulnerable because they are at the interface between the highly stress tolerant seed embryos and the established plant, and must develop rapidly, often in a challenging environment, with limited access to nutrients and light. Using a simple experimental system, whereby the seedling stage of Arabidopsis is considerably prolonged by nutrient starvation, we analysed the physiology and metabolism of seedlings maintained in such conditions up to 4 weeks. Although development was arrested at the cotyledon stage, there was no sign of senescence and seedlings remained viable for weeks, yielding normal plants after transplantation. Photosynthetic activity compensated for respiratory carbon losses, and energy dissipation by photorespiration and alternative oxidase appeared important. Photosynthates were essentially stored as organic acids, while the pool of free amino acids remained stable. Seedlings lost the capacity to store lipids in cytosolic lipid droplets, but developed large plastoglobuli. Arabidopsis seedlings arrested in their development because of mineral starvation displayed therefore a remarkable resilience, using their metabolic and physiological plasticity to maintain a steady state for weeks, allowing resumption of development when favourable conditions ensue.


Assuntos
Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Minerais/metabolismo , Modelos Biológicos , Plântula/metabolismo , Plântula/fisiologia
6.
Front Plant Sci ; 10: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804952

RESUMO

Dormancy and germination vigor are complex traits of primary importance for adaptation and agriculture. Intraspecific variation in cytoplasmic genomes and cytonuclear interactions were previously reported to affect germination in Arabidopsis using novel cytonuclear combinations that disrupt co-adaptation between natural variants of nuclear and cytoplasmic genomes. However, specific aspects of dormancy and germination vigor were not thoroughly explored, nor the parental contributions to the genetic effects. Here, we specifically assessed dormancy, germination performance and longevity of seeds from Arabidopsis plants with natural and new genomic compositions. All three traits were modified by cytonuclear reshuffling. Both depth and release rate of dormancy could be modified by a changing of cytoplasm. Significant changes on dormancy and germination performance due to specific cytonuclear interacting combinations mainly occurred in opposite directions, consistent with the idea that a single physiological consequence of the new genetic combination affected both traits oppositely. However, this was not always the case. Interestingly, the ability of parental accessions to contribute to significant cytonuclear interactions modifying the germination phenotype was different depending on whether they provided the nuclear or cytoplasmic genetic compartment. The observed deleterious effects of novel cytonuclear combinations (in comparison with the nuclear parent) were consistent with a contribution of cytonuclear interactions to germination adaptive phenotypes. More surprisingly, we also observed favorable effects of novel cytonuclear combinations, suggesting suboptimal genetic combinations exist in natural populations for these traits. Reduced sensitivity to exogenous ABA and faster endogenous ABA decay during germination were observed in a novel cytonuclear combination that also exhibited enhanced longevity and better germination performance, compared to its natural nuclear parent. Taken together, our results strongly support that cytoplasmic genomes represent an additional resource of natural variation for breeding seed vigor traits.

7.
J Exp Bot ; 68(13): 3501-3512, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28859379

RESUMO

Water and life are inexorably linked, but some organisms are capable of losing almost all cellular water to enter a non-metabolic state of anhydrobiosis. This raises intriguing questions about how energy metabolism is managed during such transitions. Here, we have investigated adenylate metabolism during seed imbibition and drying using intact or fragmented pea (Pisum sativum L.) seeds. AMP was confirmed as the major adenylate stored in dry seeds, and normal adenylate balance was rapidly restored upon rehydration of the tissues. Conversely, re-drying of fully imbibed seeds reversed the balance toward AMP accumulation. The overall analysis, supported by in vitro enzyme mimicking experiments, shows that during tissue dehydration, when oxidative phosphorylation is no longer efficient because of decreasing water content, the ATP metabolic demand is met by adenylate kinase, resulting in accumulation of AMP. During seed imbibition, adenylate balance is rapidly restored from the AMP stock by the concerted action of adenylate kinase and mitochondria. The adenylate balance in orthodox seeds, and probably in other anhydrobiotes, appears to be simply driven by water content throughout the interplay between ATP metabolic demand, adenylate kinase, and oxidative phosphorylation, which requires mitochondria to be energetically efficient from the onset of imbibition.


Assuntos
Monofosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Mitocôndrias/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Água/metabolismo , Dessecação , Metabolismo Energético , Pisum sativum/enzimologia
8.
Plant Cell ; 29(1): 109-128, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062752

RESUMO

Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.


Assuntos
Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Microscopia Confocal , Mitocôndrias/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Água/metabolismo
9.
BMC Genomics ; 17(1): 818, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769163

RESUMO

BACKGROUND: Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. RESULTS: Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons. A transcriptomic and a metabolic analysis strongly suggest that energy availability is the crucial limiting factor leading to high and rapid transcriptional reprogramming that can ultimately lead to death. We show that the accumulation of phenanthrene in leaves inhibits electron transfer and photosynthesis within a few minutes, probably disrupting energy transformation. CONCLUSION: This kinetic analysis improved the resolution of the transcriptome in the initial plant response to phenanthrene, identifying genes that are involved in primary processes set up to sense and detoxify this pollutant but also in molecular mechanisms used by the plant to cope with such harmful stress. The identification of first events involved in plant response to phenanthrene is a key step in the selection of candidates for further functional characterization, with the prospect of engineering efficient ecological detoxification systems for polycyclic aromatic hydrocarbons.


Assuntos
Poluentes Ambientais/farmacologia , Fenantrenos/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/genética , Análise por Conglomerados , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Transcriptoma , Xenobióticos/farmacologia
10.
Plant Physiol ; 166(4): 1788-802, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25301889

RESUMO

Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.


Assuntos
Arabidopsis/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Respiração Celular , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica , Metabolômica , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Consumo de Oxigênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética
11.
Plant Physiol ; 166(2): 808-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25165398

RESUMO

Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Mitocôndrias/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Potencial da Membrana Mitocondrial , Fotossíntese , Transcriptoma
12.
Biochim Biophys Acta ; 1777(10): 1268-75, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18602886

RESUMO

Actively respiring animal and plant tissues experience hypoxia because of mitochondrial O(2) consumption. Controlling oxygen balance is a critical issue that involves in mammals hypoxia-inducible factor (HIF) mediated transcriptional regulation, cytochrome oxidase (COX) subunit adjustment and nitric oxide (NO) as a mediator in vasodilatation and oxygen homeostasis. In plants, NO, mainly derived from nitrite, is also an important signalling molecule. We describe here a mechanism by which mitochondrial respiration is adjusted to prevent a tissue to reach anoxia. During pea seed germination, the internal atmosphere was strongly hypoxic due to very active mitochondrial respiration. There was no sign of fermentation, suggesting a down-regulation of O(2) consumption near anoxia. Mitochondria were found to finely regulate their surrounding O(2) level through a nitrite-dependent NO production, which was ascertained using electron paramagnetic resonance (EPR) spin trapping of NO within membranes. At low O(2), nitrite is reduced into NO, likely at complex III, and in turn reversibly inhibits COX, provoking a rise to a higher steady state level of oxygen. Since NO can be re-oxidized into nitrite chemically or by COX, a nitrite-NO pool is maintained, preventing mitochondrial anoxia. Such an evolutionarily conserved mechanism should have an important role for oxygen homeostasis in tissues undergoing hypoxia.


Assuntos
Respiração Celular/fisiologia , Hipóxia , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Óxido Nítrico/química , Nitritos/química , Oxirredução , Oxigênio/metabolismo , Pisum sativum/anatomia & histologia , Pisum sativum/química , Pisum sativum/metabolismo , Plantas/metabolismo , Sementes/química , Sementes/metabolismo
13.
New Phytol ; 176(4): 813-823, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17937762

RESUMO

Storage product accumulation in seeds of major crop species is limited by their low internal oxygen concentration. Adjustment of energy and storage metabolism to oxygen deficiency (hypoxia) in seeds is highly relevant for agriculture and biotechnology. However, the mechanisms of low-oxygen sensing and balancing remain a mystery. Here, it is shown that normal hypoxia in seeds of soybean (Glycine max) and pea (Pisum sativum) triggers a nitrite-dependent increase in endogenous nitric oxide (NO) concentrations. NO, in turn, reduces the oxygen consumption of seeds, generating a localized decrease in both ATP availability and biosynthetic activity. Increasing oxygen availability reduces endogenous NO concentrations, thereby abolishing mitochondrial and metabolic inhibition. This auto-regulatory and reversible oxygen balancing, via NO, avoids seed anoxia and suggests a key role for NO in regulating storage activity. This hypothesis is reinforced by changes in energy status (ATP:ADP ratio), steady-state metabolite concentrations and biosynthetic fluxes under NO treatment. The proposed mechanism of low-oxygen sensing and balancing in plants offers the prospect of a new field of study in crop biotechnology.


Assuntos
Glycine max/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Trifosfato de Adenosina/metabolismo , Óxido Nítrico/farmacologia , Consumo de Oxigênio , Proteínas de Plantas/biossíntese , Sementes/efeitos dos fármacos
14.
Plant Physiol ; 140(1): 326-35, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16377742

RESUMO

Most seeds are anhydrobiotes, relying on an array of protective and repair mechanisms, and seed mitochondria have previously been shown to harbor stress proteins probably involved in desiccation tolerance. Since temperature stress is a major issue for germinating seeds, the temperature response of pea (Pisum sativum) seed mitochondria was examined in comparison with that of mitochondria from etiolated epicotyl, a desiccation-sensitive tissue. The functional analysis illustrated the remarkable temperature tolerance of seed mitochondria in response to both cold and heat stress. The mitochondria maintained a well-coupled respiration between -3.5 degrees C and 40 degrees C, while epicotyl mitochondria were not efficient below 0 degrees C and collapsed above 30 degrees C. Both mitochondria exhibited a similar Arrhenius break temperature at 7 degrees C, although they differed in phospholipid composition. Seed mitochondria had a lower phosphatidylethanolamine-to-phosphatidylcholine ratio, fewer unsaturated fatty acids, and appeared less susceptible to lipid peroxidation. They also accumulated large amounts of heat shock protein HSP22 and late-embryogenesis abundant protein PsLEAm. The combination of membrane composition and stress protein accumulation required for desiccation tolerance is expected to lead to an unusually wide temperature tolerance, contributing to the fitness of germinating seeds in adverse conditions. The unique oxidation of external NADH at low temperatures found with several types of mitochondria may play a central role in maintaining energy homeostasis during cold shock, a situation often encountered by sessile and ectothermic higher plants.


Assuntos
Aclimatação , Mitocôndrias/fisiologia , Pisum sativum/ultraestrutura , Temperatura , Ácidos Graxos/análise , Germinação , Proteínas de Choque Térmico/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/química , Modelos Biológicos , NAD/metabolismo , Oxirredução , Pisum sativum/embriologia , Pisum sativum/fisiologia , Fosfolipídeos/análise , Proteínas de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Sementes/anatomia & histologia , Sementes/metabolismo , Sementes/fisiologia
15.
Plant Physiol ; 137(1): 157-67, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618423

RESUMO

Late-embryogenesis abundant (LEA) proteins are hydrophilic proteins that accumulate to a high level in desiccation-tolerant tissues and are thus prominent in seeds. They are expected to play a protective role during dehydration; however, functional evidence is scarce. We identified a LEA protein of group 3 (PsLEAm) that was localized within the matrix space of pea (Pisum sativum) seed mitochondria. PsLEAm revealed typical LEA features such as high hydrophilicity and repeated motifs, except for the N-terminal transit peptide. Most of the highly charged protein was predicted to fold into amphiphilic alpha-helixes. PsLEAm was expressed during late seed development and remained in the dry seed and throughout germination. Application of the stress hormone abscisic acid was found to reinduce the expression of PsLEAm transcripts during germination. PsLEAm could not be detected in vegetative tissues; however, its expression could be reinduced in leaves by severe water stress. The recombinant PsLEAm was shown to protect two mitochondrial matrix enzymes, fumarase and rhodanese, during drying in an in vitro assay. The overall results constitute, to our knowledge, the first characterization of a LEA protein in mitochondria and experimental evidence for a beneficial role of a LEA protein with respect to proteins during desiccation.


Assuntos
Mitocôndrias/química , Pisum sativum/química , Proteínas de Plantas/fisiologia , Sementes/química , Água/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Pisum sativum/fisiologia , Proteínas de Plantas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...