Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Intensive Care ; 5: 53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808576

RESUMO

BACKGROUND: Near-fatal asthma attacks are life threatening events that often require mechanical ventilation. Extracorporeal carbon dioxide removal (ECCO2R) is, beside extracorporeal membrane oxygenation (ECMO), a well-established rescue option whenever ventilation gets to its limits. But there seems to be very rare experience with those techniques in avoiding mechanical ventilation in severe asthma attacks. CASE PRESENTATION: A 67-year-old man with a near-fatal asthma attack deteriorated under non-invasive ventilation conditions. Beside pharmacological treatment, the intensivists decided to use an extracorporeal carbon dioxide removal system (ECCO2R) to avoid sedation and intubation. Within only a few hours, there was a breakthrough and the patient's status improved continuously. One and a half days later, weaning from ECCO2R was already completed. CONCLUSIONS: The discussion deals with several advantages of extracorporeal lung support in acute asthma, the potential of avoiding intubation and sedation, as well as the benefits of a conscious and spontaneously breathing patient. Extracorporeal membrane oxygenation (ECMO) in general and ECCO2R in particular is a highly effective method for the treatment of an acute near-fatal asthma attack. Pathophysiological aspects favor the "awake" approach, without sedation, intubation, and mechanical ventilation. Therefore, experienced clinicians might consider "awake" ECCO2R in similar cases.

2.
Eur Spine J ; 16(6): 813-20, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16944226

RESUMO

There are various surgical techniques for the treatment of spinal fractures in the thoracolumbar region. Several implants have been developed for anterior or posterior instrumentation. Optimal treatment of unstable thoracolumbar osseous and ligamentous injuries remains controversial. To compare the stabilizing effects of an antero-lateral, thoracoscopically implantable plate system (macsTL, Aesculap, Germany) with the stability provided by a fixateur interne (SOCON, Aesculap, Germany), this in vitro investigation examined six human bisegmental (T12-L2) spinal units. Specimens were tested intact, and with simulation of osseous lesions in the anterior and ligamentous lesions in the posterior column (combined A/B-fracture). While loaded in the main anatomical planes such as flexion/extension, left and right lateral bending and left and right axial rotation with a bending moment of 7.5 Nm in a special testing jigs, motion analysis was performed. Quantitative interpretation of the stabilizing effect was achieved using a contactless three-dimensional motion analysis system. Each specimen was tested in four different scenarios: the first step measured movements of intact spinal segments. For the second step, specimens underwent simulation of combined A/B-fracture provided with bisegmental (T12/L2) antero-lateral fixation and bone strut graft from the iliac crest. For the third step, segments were additionally stabilized by the fixateur interne. The last measurement (fourth step) was performed after removing the anterior instrumentation. Range of motion (ROM) values were compared and statistically evaluated. Compared to the intact specimens the anterior instrumentation of the combined lesion, simulated A/B-fracture, leads to a stabilizing effect in flexion/extension and lateral bending. In contrast to these findings the torsional instability increased for the upper segment and bisegmentally. A maximum rigidity, beyond intact values, was registered for each anatomical plane with the combined instrumentation: antero-lateral and fixateur interne. After removing the anterior screw plate system maximum movements, in all segments for flexion/extension and lateral bending, bisegmentally and for the upper segment in axial rotation, were less than ROM values measured with the anterior system only. With respect to these findings a combined ventro-dorsal stabilization procedure should be considered for ligamentous disruptions of the posterior column in combination with A-fractures in the thoracolumbar junction.


Assuntos
Vértebras Lombares/patologia , Vértebras Torácicas/patologia , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Rotação
3.
Eur Spine J ; 14(2): 197-204, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15243790

RESUMO

Controversy exists about the indications, advantages and disadvantages of various surgical techniques used for anterior interbody fusion of spinal fractures in the thoracolumbar junction. The purpose of this study was to evaluate the stabilizing effect of an anterolateral and thoracoscopically implantable screw-plate system. Six human bisegmental spinal units (T12-L2) were used for the biomechanical in vitro testing procedure. Each specimen was tested in three different scenarios: (1) intact spinal segments vs (2) monosegmental (T12/L1) anterolateral fixation (macsTL, Aesculap, Germany) with an interbody bone strut graft from the iliac crest after both partial corpectomy (L1) and discectomy (T12/L1) vs (3) bisegmental anterolateral instrumentation after extended partial corpectomy (L1), and bisegmental discectomy (T12/L1 and L1/L2). Specimens were loaded with an alternating, nondestructive maximum bending moment of +/-7.5 Nm in six directions: flexion/extension, right and left lateral bending, and right and left axial rotation. Motion analysis was performed by a contact-less three-dimensional optical measuring system. Segmental stiffness of the three different scenarios was evaluated by the relative alteration of the intervertebral angles in the three main anatomical planes. With each stabilization technique, the specimens were more rigid, compared with the intact spine, for flexion/extension (sagittal plane) as well as in left and right lateral bending (frontal plane). In these planes the bisegmental instrumentation compared to the monosegmental case had an even larger stiffening effect on the specimens. In contrast to these findings, axial rotation showed a modest increase of motion after bisegmental instrumentation. To conclude, the immobilization of monosegmental fractures in the thoracolumbar junction can be secured by means of bone grafting and the implant used in this study for all three anatomical planes. After bisegmental anterolateral stabilization a sufficient reduction of the movements was registered for flexion/extension and lateral bending. However, the observed slight increase of the range of motion in the transversal plane may lead to loosening of the implant before union. Therefore, the use of an additional dorsal fixation device should be considered.


Assuntos
Placas Ósseas , Parafusos Ósseos , Vértebras Lombares/lesões , Fraturas da Coluna Vertebral/cirurgia , Vértebras Torácicas/lesões , Adulto , Fenômenos Biomecânicos , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...