Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 686136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512373

RESUMO

One of the essential diagnostic tools of cardiac arrhythmia is activation mapping. Noninvasive current mapping procedures include electrocardiographic imaging. It allows reconstructing heart surface potentials from measured body surface potentials. Then, activation maps are generated using the heart surface potentials. Recently, a study suggests to deploy artificial neural networks to estimate activation maps directly from body surface potential measurements. Here we carry out a comparative study between the data-driven approach DirectMap and noninvasive classic technique based on reconstructed heart surface potentials using both Finite element method combined with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural networks (SATDNN-AT). In this work, we assess the performance of the three approaches using a synthetic single paced-rhythm dataset generated on the atria surface. The results show that data-driven approach DirectMap quantitatively outperforms the two other methods. In fact, we observe an absolute activation time error and a correlation coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2% using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive gaussian noise compared to FEM-L1.

2.
J Math Biol ; 72(6): 1441-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26219250

RESUMO

In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.


Assuntos
Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Animais , Epidemias/estatística & dados numéricos , Cadeia Alimentar , Humanos , Modelos Lineares , Conceitos Matemáticos , Dinâmica não Linear , Distribuição Normal , Comportamento Predatório
3.
Artigo em Inglês | MEDLINE | ID: mdl-24110558

RESUMO

The inverse problem in electrocardiography is to reconstruct the voltage in the surface of the heart, using a high density electrocardiogram. This problem is usually solved using regularization techniques, which tend to give the minimum energy response in a static scheme. In our work, we propose to calculate a dynamic inverse solution using the Monodomain as a model of electrical heart activity, thus constraining the family of solutions to one that satisfies the model.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Algoritmos , Simulação por Computador , Eletrocardiografia/métodos , Humanos , Contração Miocárdica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...