Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(10): 104103, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374014

RESUMO

The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

2.
J Phys Chem A ; 119(9): 1469-77, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24968112

RESUMO

The computation of the rotational g tensor with the recently developed auxiliary density functional theory (ADFT) gauge including atomic orbital (GIAO) methodology is presented. For the rotational g tensor, the calculation of the magnetizability tensor represents the most demanding computational task. With the ADFT-GIAO methodology, the CPU time for the magnetizability tensor calculation can be dramatically reduced. Therefore, it seems most desirable to employ the ADFT-GIAO methodology also for the computation of the rotational g tensor. In this work, the quality of rotational g tensors obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good. Furthermore, we also show that the ADFT-GIAO g tensor calculation is applicable to large systems like carbon nanotube models containing hundreds of atom and thousands of basis functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...