Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(20): 7423-7431, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37795947

RESUMO

In its original version, the Thomson problem consists of the search for the minimum-energy configuration of a set of point-like electrons that are confined to the surface of a two-dimensional sphere (S2) that repel each other according to Coulomb's law, in which the distance is the Euclidean distance in the embedding space of the sphere, i.e., R3. In this work, we consider the analogous problem where the electrons are confined to an n-dimensional flat Clifford torus Tn with n = 1, 2, 3. Since the torus Tn can be embedded in the complex manifold Cn, we define the distance in the Coulomb law as the Euclidean distance in Cn, in analogy to what is done for the Thomson problem on the sphere. The Thomson problem on a Clifford torus is of interest because supercells with the topology of a Clifford torus can be used to describe periodic systems such as Wigner crystals. In this work, we numerically solve the Thomson problem on a square Clifford torus. To illustrate the usefulness of our approach, we apply it to Wigner crystals. We demonstrate that the equilibrium configurations we obtain for large numbers of electrons are consistent with the predicted structures of Wigner crystals. Finally, in the one-dimensional case, we analytically obtain the energy spectrum and the phonon dispersion law.

2.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37671957

RESUMO

The electric polarizability and the spread of the total position tensors are used to characterize the metallic vs insulator nature of large (finite) systems. Finite clusters are usually treated within the open boundary condition formalism. This introduces border effects, which prevent a fast convergence to the thermodynamic limit and can be eliminated within the formalism of periodic boundary conditions. Recently, we introduced an original approach to periodic boundary conditions, named Clifford boundary conditions. It considers a finite fragment extracted from a periodic system and the modification of its topology into that of a Clifford torus. The quantity representing the position is modified in order to fulfill the system periodicity. In this work, we apply the formalism of Clifford boundary conditions to the case of carbon nanotubes, whose treatment results in a particularly simple zigzag geometry. Indeed, we demonstrate that at the Hückel level, these nanotubes, either finite or periodic, are formally equivalent to a collection of non-interacting dimerized linear chains, thus simplifying their treatment. This equivalence is used to describe some nanotube properties as the sum of the contributions of the independent chains and to identify the origin of peculiar behaviors (such as conductivity). Indeed, if the number of hexagons along the circumference is a multiple of three, a metallic behavior is found, namely a divergence of both the (per electron) polarizability and total position spread of at least one linear chain. These results are in agreement with those in the literature from tight-binding calculations.

3.
J Chem Phys ; 157(17): 174107, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347706

RESUMO

In this work, we study the Wigner localization of interacting electrons that are confined to a quasi-one-dimensional harmonic potential using accurate quantum chemistry approaches. We demonstrate that the Wigner regime can be reached using small values of the confinement parameter. To obtain physical insight in our results, we analyze them with a semi-analytical model for two electrons. Thanks to electronic-structure properties such as the one-body density and the particle-hole entropy, we are able to define a path that connects the Wigner regime to the Fermi-gas regime by varying the confinement parameter. In particular, we show that the particle-hole entropy, as a function of the confinement parameter, smoothly connects the two regimes. Moreover, it exhibits a maximum that could be interpreted as the transition point between the localized and delocalized regimes.

4.
J Chem Phys ; 155(12): 124107, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598588

RESUMO

The localization spread gives a criterion to decide between metallic and insulating behavior of a material. It is defined as the second moment cumulant of the many-body position operator, divided by the number of electrons. Different operators are used for systems treated with open or periodic boundary conditions. In particular, in the case of periodic systems, we use the complex position definition, which was already used in similar contexts for the treatment of both classical and quantum situations. In this study, we show that the localization spread evaluated on a finite ring system of radius R with open boundary conditions leads, in the large R limit, to the same formula derived by Resta and co-workers [C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001)] for 1D systems with periodic Born-von Kármán boundary conditions. A second formula, alternative to Resta's, is also given based on the sum-over-state formalism, allowing for an interesting generalization to polarizability and other similar quantities.

5.
J Phys Chem Lett ; 11(17): 7090-7095, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787331

RESUMO

We propose a simple direct-sum method for the efficient evaluation of lattice sums in periodic solids. It consists of two main principles: (i) the creation of a supercell that has the topology of a Clifford torus, which is a flat, finite, and borderless manifold; (ii) the renormalization of the distance between two points on the Clifford torus by defining it as the Euclidean distance in the embedding space of the Clifford torus. Our approach does not require any integral transformations nor any renormalization of the charges. We illustrate our approach by applying it to the calculation of the Madelung constants of ionic crystals. We show that the convergence toward the system of infinite size is monotonic, which allows for a straightforward extrapolation of the Madelung constant. We are able to recover the Madelung constants with a remarkable accuracy, and at an almost negligible computational cost, i.e., a few seconds on a laptop computer.

6.
J Chem Phys ; 148(12): 124103, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604812

RESUMO

We propose a simple and efficient approach to study Wigner localization in one-dimensional systems using ab initio theory. In particular, we propose a suitable basis for the study of localization which consists of equally spaced overlapping gaussians. We illustrate our approach with full-configuration interaction which yields exact results for a given basis set. With our approach, we were able to study up to 8 electrons with full-configuration interaction. Finally, we propose the total-position spread tensor and the total electron entropy as convenient quantities to obtain signatures of Wigner localization.

7.
J Phys Chem A ; 120(27): 5230-8, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27014834

RESUMO

The spin partition (SP) of the total-position spread (TPS) tensor is applied to the case of a few light diatomic molecules at full configuration interaction (FCI) level. It appears that the SP-TPS tensor gives informations that are complementary with respect to the corresponding spin-summed (SS) quantity. The spin-summed total position-spread tensor (SS-TPS, Λ) is defined as the second moment cumulant of the total position operator, and the SP-TPS is its partition in equal (Λαα+ßß) and different spin (Λαß+ßα) contributions. Then, the SS-TPS allows description of the molecule charge mobility, while the SP-TPS allows description of the spin delocalization. The most relevant Cartesian-component for both tensors (SS-TPS and SP-TPS) is the component along the chemical bond (Λ(∥)), and it was found that its behavior was related to the type of interaction involved. For covalent bonds the SP-TPS has a squared growth when the bond is stretched, while for ionic bonds there exists a faster-than-linear growth after the avoided-crossing between the covalent and the ionic states. Other exotic bonds, like He2 and Be2, were also considered, and a particular spin delocalization was able to describe the different character of the two weakly bonded molecules, and specially the multireference character of the wave function along the dissociative potential energy curve.

9.
J Chem Phys ; 142(9): 094113, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25747067

RESUMO

The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains Hn (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.

10.
J Chem Phys ; 143(24): 244308, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723672

RESUMO

The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum is associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection Sz has been derived.

11.
J Mol Model ; 20(7): 2284, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24969843

RESUMO

Planar molecular edifices obtained by joining polyacene fragments (polyacene stripes) are investigated at tight-binding (i.e., with a Hückel Hamiltonian) and ab initio level. For this kind of system, it is known that the presence of 60-degree angles between two stripes of the polyacene molecular skeleton induces the formation of singly occupied molecular orbitals, whose combination gives rise to quasi-degenerate electronic states. In particular, two types of convex polygons having a unique side length (rhombuses and triangles) are considered in this work. It is shown that the saturation via hydrogen atoms of the apical carbons located on outer borders of the 60-degree angles increases the number of quasi-degenerate orbitals, and hence the maximal multiplicity of the low-lying states of the system. Our tight-binding and ab initio (CAS-CI, NEVPT2) calculations indicate that the spin multiplicity of these molecular structures is in systematical accord with the Ovchinnikov rule.

12.
J Phys Chem A ; 118(33): 6664-73, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24866399

RESUMO

The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains.


Assuntos
Berílio/química , Teoria Quântica , Dimerização
13.
J Comput Chem ; 35(8): 611-21, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24535748

RESUMO

Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) to be exchanged. The codes are either interfaced directly, or transfer data by means of wrappers; both types of data exchange are supported by the Q5/D5Cost library. Further, the exchange of data between QC and QD codes is addressed. As a proof of concept, the H + H2 reaction is discussed. The proposed scheme is shown to provide an excellent basis for cooperative code development, even across domain boundaries. Moreover, the scheme presented is found to be useful also as a production tool in the grid distributed computing environment.

14.
J Comput Chem ; 35(10): 802-8, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26249028

RESUMO

The behavior of the Total Position Spread (TPS) tensor, which is the second moment cumulant of the total position operator, is investigated in the case of a mixed-valence model system. The system consists of two H2 molecules placed at a distance D. If D is larger than about 4 bohr, the singly ionized system shows a mixed-valence character. It is shown that the magnitude of the TPS has a strong peak in the region of the avoided crossing. We believe that the TPS can be a powerful tool to characterize the behavior of the electrons in realistic mixed-valence compounds.

15.
J Chem Phys ; 138(7): 074315, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23445017

RESUMO

The Peierls dimerization with associated metal-insulator transition is studied in a model systems with ab initio methods. These are chains and rings H(N) of hydrogen atoms treated by full CI using a minimal STO-3G atomic orbital basis for N = 6 to N = 14. We describe and discuss in some detail the potential energy surface governing Peierls' dimerization and study the localization tensor as the indicator of the metal-insulator transition. Results for linear chains and rings are compared.

16.
J Chem Phys ; 138(5): 054314, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23406126

RESUMO

A closed analytical formula for the localization tensor of the Heitler-London and related wavefunctions of the hydrogen molecule is given. For the wavefunctions with a well defined nature, the various contributions of the analytical expressions can be interpreted in simple terms. The results are then compared with full configuration interaction calculations, showing that the main contributions to the localization tensor for the ground state wavefunction are caught by the very simple wavefunctions here considered.

17.
J Phys Chem A ; 117(1): 192-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23206193

RESUMO

The electronic structure of the beryllium hydride anion, BeH(-), was investigated at valence full-configuration-interaction (FCI) level, using large cc-pV6Z basis sets. It appears that there is a deep change of the wave function nature as a function of the internuclear distance: the ion structure goes from a weakly bonded Be···H(-) complex, at long distance, to a rather strongly bonded system (more than 2 eV) at short distance, having a (:Be-H)(-) Lewis structure. In this case, it is the beryllium atom that formally bears the negative charge, a surprising result in view of the fact that it is the hydrogen atom that has a larger electronegativity. Even more surprisingly, at very short distances the average position of the total electronic charge is close to the beryllium atom but on the opposite side with respect to the hydrogen position.

18.
J Chem Theory Comput ; 9(12): 5286-95, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26592266

RESUMO

The behavior of the Position-Spread Tensor (Λ) in a series of light diatomic molecules (either neutral or negative ions) is investigated at a Full Configuration Interaction level. This tensor, which is the second moment cumulant of the total position operator, is invariant with respect to molecular translations, while its trace is also rotationally invariant. Moreover, the tensor is additive in the case of noninteracting subsystems and can be seen as an intrinsic property of a molecule. In the present work, it is shown that the longitudinal component of the tensor, Λ∥, which is small for internuclear distances close to the equilibrium, tends to grow if the bond is stretched. A maximum is reached in the region of the bond breaking, then Λ∥ decreases and converges toward the isolated-atom value. The degenerate transversal components, Λ⊥, on the other hand, usually have a monotonic growth toward the atomic value. The Position Spread is extremely sensitive to reorganization of the molecular wave function, and it becomes larger in the case of an increase of the electron mobility, as illustrated by the neutral-ionic avoided crossing in LiF. For these reasons, the Position Spread can be an extremely useful property that characterizes the nature of the wave function in a molecular system.

19.
Phys Chem Chem Phys ; 14(45): 15666-76, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23080083

RESUMO

The electronic structure of planar molecular edifices obtained by joining polyacene fragments (polyacene stripes) is investigated at tight-binding and ab initio levels. It is shown that the presence of 60° angles in the molecular skeleton induces the formation of singly-occupied molecular orbitals, whose combination gives rise to quasi-degenerate electronic states. The ab initio investigation requires therefore the use of CAS-SCF and MR-PT approaches. The three types of possible convex polygons having a unique side length (hexagons, rhombuses and triangles) have been considered in this work. The spin multiplicity of these quasi-flat molecular structures is found to be in systematical accord with the Ovchinnikov rule.


Assuntos
Polímeros/química , Teoria Quântica , Estrutura Molecular
20.
J Chem Phys ; 133(6): 064703, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20707582

RESUMO

The qualitative difference between insulators and metals stems from the nature of the low-lying excitations, but also--according to Kohn's theory [W. Kohn, Phys. Rev. 133, A171 (1964)]--from a different organization of the electrons in their ground state: electrons are localized in insulators and delocalized in metals. We adopt a quantitative measure of such localization, by means of a "localization length" lambda, finite in insulators and divergent in metals. We perform simulations over a one-dimensional binary alloy model, in a tight-binding scheme. In the ordered case the model is either a band insulator or a band metal, whereas in the disordered case it is an Anderson insulator. The results show indeed a localized/delocalized ground state in the insulating/metallic cases, as expected. More interestingly, we find a significant difference between the two insulating cases: band versus Anderson. The insulating behavior is due to two very different scattering mechanisms; we show that the corresponding values of lambda differ by a large factor for the same alloy composition. We also investigate the organization of the electrons in the many body ground state from the viewpoint of the density matrices and of Boys' theory of localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...